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P_FA_

The analysis, design and synthesis of solid state circuits with

the aid of computers is now practical. A two day institute was held

at the University of Santa Clara on September 15-16, 1966 in order

to present the approaches to modern solid-state circuit design. Topics

which were discussed in the institute included the modelling and

simulation of active devices, design implementation by computer, and

the challenges of computer aided design. The institute provided a

contempory understanding of the approaches to computer aided design

as well as providing an opportunity for the attendees and the faculty

to exchange ideas informally. The success of the first institute

warranted the schedulin_ of a Second Institute on Modern Solid State

Circuit DesiAmwhich will be held on September 14-15, 1967 at the

University of Santa Clara.
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PHYSICALMODELSOFACTIVEDEVICES

R. B. YARBROUGH
University of Santa Clara
Santa Clara, California

INTRODUCTION

The distinction between a physical model of an active device and a

mathematical model or equivalent circuit of the same device may seem to

be neither obvious nor important. While the physical model is

established by combining insight into the physical phenomena and

mathematics, it inevitably results in mathematical expressions which may

be used to obtain an equivalent circuit. The end result may be

essentially the same as an equivalent circuit obtained by measurements

and the application of two-port network theory. Information about the

device over its entire range of possible operation, however, may be

measured only with difficulty. The physical model, even if only

qualitatively correct, can provide understanding of the behavior of

the device over a wide range of applications which can be made quite

accurate with relatively few measurements.

/
The !first model of the Junction transistor which was applicable

over a wide range of operating level was the large signal model i

proposed by Ebers and Moll [Ref. 1]. The form of the mathematical

expression for the two-port equations is based on the static behavior

of p-n Junctions, and the model parameters are directly obtainable by

the measurement of four short-circuit parameters of a two-port network.

This model has good accuracy for static and low frequency operation but

is lacking in dynamic information. A subsequent paper by Moll [ref 2]

contains provision for the dynamics, particularly for switching, but

is essentially non-physical in its approach. Linvill [Ref. 4]

develops a model for the intrinsic transistor based on the continuity

relations in the base region. This approach is physical and introduces

a new set of parameters, based on the continuity equation, providing a

linear physical model relating carrier densities and current densities.

This model inherently contains the dynamic information of the intrinsic

transistor and may be directly related to the Ebers and Moll equations.

This paper draws on the works of Ebers and Moll, Linvill and

others to obtain a physical model of the junction transistor which may

be used to derive any of the equivalent circuits of two-port network

theory by applying the proper approximations. The only approximations

other than the mathematical description of physical phenomena is the

lumping of effects which are actually distributed. /
/



THE JUNCTION TRANSISTOR

The Junction transistor is a symmetrical device composed of two

p-n Junctions and an intervening base region. The physical model is

developed by considering the Junction characteristics and the base

characteristics separately and then matching them together. The

Junction behavior as described by the Ebers and Moll equations has its

basis in quantum mechanics, while the Junction capacitance and surface

leakage resistance is based primarily on classical electromagnetic

theory. The active base region of the transistor is physically

described in terms of classical physics while some of the parameters

were obtained from statistical considerations. The model is completed

by including ohmic losses in the body of the transistor as series

elements.

For purposes of development the Ebers and Moll relations are

considered first, then the Junction capacitance and surface leakage

and finally the active base. The combination of these three aspects

then result in a general physical model.!

STATIC JUNCTION RELATIONS

An intrinsic barrier voltage, _ , is developed when a Junction

exists between p-type and n-type semiconductors. This barrier

potential is the difference in the fermi energy levels in the two

materials which is in turn dependent on doping levels. Under thermal

equilibrium an equal number of carriers cross this Junction in both

directions so that the net current is zero. The barrier potential is

altered when a voltage is applied to the Junction, and the resulting

current is found to vary exponentially as qV/kT where q is the

charge of an electron, V is the applied voltage, k is Boltzmann's

constant and T is the temperature in degrees kelvin. When a second

Junction is placed nearby, the current at the first is affected by

the voltage at the second in the same way but to a lesser degree. The

form of the voltage-current relations for the Junctions is then that

given by Ebers and Moll:

qV E qV c

- all( k-7- l)+ a12( - i)

qV E qV C

I_ = a21(ekT - i) + a22(ekT - i)

(1)



where IE' and VE are the current and voltage at one Junction

(the emitter) and I C' and VC are those of the other Junction

(the collector). The Junction voltages VE and V C are defined

as drops from the p material to the n material, and the positive

directions of currents are from p to n so that the expressions (1)

are valid for either PNP or NPN transistors. The aij coefficients

can theoretically be determined from the short circuit tests, however

some inaccuracy arises in that the Junction voltages are not directly

measurable and the terminal currents differ from I_ and I_ by

the leakage currents. This prevents the easy determination of these

coefficients by simply making one voltage zero and the other a large

negative value. The Ebers and Moll relations, while inaccurate for

negative voltages due to leakage currents, are sufficiently accurate

with positive voltages to allow the coefficients to be determined and

yield the relations:

qVE qv C

I_. = IEo(e k-'_'- i) -aIIcO(e k-'_"- i)

qV E qV C

I_ =-mNIEo(ek-_'- i) + Ico(ek-_-- i)

(2)

where lEO and Ico are the_verse saturation currents of the

Junctions and a N and aI are the normal and inverse short circuit

current gains.

OTHER JUNCTION EFFECTS

The potential barrier across the Junction has an associated

depletion layer, a region in which mobile charge carriers are absent

except for those makin_ up the currents through the Junction. The

depletion of the mobile charge carriers is instrumental in establish-

ing the voltage, the bound charges remaining within the depletion

region causing the electric field, which integrates to the barrier

potential. The width of the depletion re_ion varies with the barrier

potential and thereby with the applied voltage. The depletion region

stores charge in the bound char_es, so that there is a capacitance

associated with the Junction. The capacitance is approximately

inversely proportioned to the width, which in turn is proportional

to a fractional power of the barrier potential or the Junction

voltage. The exact relation of width to the voltage depends on the



doping distribution in the depletion region, and the fractional
power is between 2/3 and 1/2. This causes the Junction capacitance

for a one-dimensional Junction theoretically to vary, as

C
O

= , , , >_<n< j,cj 1 ' (3)

(l-V_-l)_ vj < _o "
0

where _ is the intrinsic barrier potential, dependent on doping

levels, _nd C is the capacitance with no applied voltage. This is
o

a lumped model of the Junction capacitance, but the effect is actually

distributed.

Because of various crystaline imperfections on the surfaces of

the semiconductor there exists a path for current flow over the

surface of the Junction. The associated parameter is the surface

leakage resistance. Such a resistance depends somewhat on the width

of the Junction, but is more or less constant, and is less of a

distributed parameter than most others considered.

The width of the Junctions also affect the so-called base

spreading resistance. The effective ohmic impedance of the base

region depends on the width of the base. As the base is sandwiched

between the Junctions, its width is also affected to some degree by

the width of the depletion regions. As the emitter and collector

regions are usually more highly doped than the base region, the

depletion regions tend to be predominantly in the base. With a

narrow base region, changes in the depletion widths can make

significant changes in the base spreading resistance rbb , . As the

resistance is inversely proportional to the base width, the base

spreading resistance for a one-dimensional transistor theoretically

varies as

rbb,

rbO

_- ......... ,1 , (4)
_ _ _i

@E C

where 6E is approximately the ratio of the unbiased width of the

emitter Junction to the unbiased base width and 6C has the same

relation referred to the collector Junction. The term rbO is the

base resistance with no bias. This again is a lumped model of a



distributed phenomenon.

THEEXTRINSICTRANSISTOR

It is now possible to begin the construction of the physical
model by meansof an equivalent circuit. Figure 1 shows such a
circuit with bulk resistances ree , and rcc , (usually small
because of doping densities) surface leakage resistances r and

SC

rse base spreading resistance rbb , and the Junction capacitances

Cje and Cjc . The junction capacitances and base spreading

resistance are indicated as distributed, but in usual practice the

Junction capacitances are assumed to be connected to the active

base B 'l.

E tee' _' I'
) E INTI_IN 3 IC

TRAK1.5 tSTOR /_

/ I _CC I

B f

• e

>

rsc

3-5_.

Figure i. Transistor model showing extrinsic parameters.

iii ii i i i , i | i i ii,,

1
At the institute it was suggested that the Junction capacitances

be lumped by connecting 1/3 of each to B' and 2/3 to B .



The intrinsic transistor or active base region is shown as a

three terminal black box with the variables of the Ebers and Moll

equation indicated. No reference directions are _iven, as they

depend on whether the transistor is PNP or NPN . For a PNP

transistors the currents are into the box and the voltages VC

and VE negative at B' . For the NPN transistor the directions
are reversed.

INTRINSIC TRANSISTOR

C0ntinuit[ Relations.

The continuity of charge density and of current within the base

give rise to a partial differential equation [for instance see Refs.

3, 5, 6 or 7 ]. For a one-dimensional PNP transistor considering

only minority carriers the equation becomes

___ Po - p a ___ (_)
= • - _p (pE) + D

at Tp _p p 2x 2

where p is the hole density in the N-type base, Po is the thermal

equilibrium hole-density, • is the recombination lifetime, Up theP

hole mobility and D is the diffusion constant. An analogous
P

equation may be obtained from a section of a lossy transmission line as

shown in Figure 2 if the current is assumed to be purely by diffusion

(E = 0). If the charge per unit length q£ is defined as

q£ = qpA, (6)

with q the magnitude of the charge on an electron and A the

cross-sectlon area of the base, the corresponding equation for charge

per unit length is

aq£ qAPo- q£ a2q£
-----= , + D (7)

at T p ax2 'p

and the equation associated with Fig. 2 is

d% G 1 d2q£ (8)
-- = CV - -- q + -- -- •
dt o C £ RC dx 2

6



2+ +

-- Vo

l-
o 0

C

Figure 2. Transmission line analo_ of the continuity equation.
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By matchin_ correspondin_ coefficients of equations 7 and 8 it is

seen that: Cx = C, I/RC = D and V° = qAPo/C .
P P

The intrinsic transistor may be modelled by usin_ the

transmission line directly. A two section approximation leads to the

hybrid Pi equivalent circuit. The principle difficulties with any

circuit analogy are first the nonlinear voltage-current relations as

in the Ebers and Moll equations (2). The second difficulty lies in

the fact that the base width varies with the Junction voltages, so

that the length of the transmission line is somewhat uncertain, In

any case it is necessary that the model of the intrinsic transistor

must be mathematically equivalent to the Ebers and Moll equations in

the static case. Any attempt to do this for the model of Eqn. (7)

will require that IEO = ICO and that aI = aN because only the

minority carrier densities were considered in the establishment of

the equation. The difference in collector and emitter dopin_
densities account for both the difference in reverse saturation

currents and for differences in current _ains (a) .

is

The saturation current for a Junction in a one-dimensional diode

D n

-rDpPno + n po ]
I° = qA[ L L '

p n

where Pno and npo are the thermal equilibrium minority carrier

densities in the N and P materials respectively. L and L are
p n

the diffusion lengths. For a transistor the diffusion length associated

with the base is modified by the factor of tanh (W/L) where W is the

base width. Then for a PNP transistor with uniform base doping:

DpPno ' D n (C)n po ]

= tan_(W/Lp) + LIco qA[Lp n

.rDDPno _ ]

IEO = q_LL" tanh(W/Lp) + Lp n

(9)

Here it is seen that the difference in the reverse saturation currents

arises from the difference in dopin_ levels in the collector [npo(C)]

and the emitter [npo(E)].

8



The difference in the o's is similarly accounted for in the
difference of emitter and collector efficiencies. The currents
accounted for in Eqn. 7 is the minority carrier current in the base.
In addition to this, both the emitter and collector currents contain
componentsof base majority carrier current. The efficiency of an
emitter is determined by the ratio of base minority current injected
from the emitter to the total emitter current. A collector efficiency
could be similarly defined for those cases where the collector acts
as an emitter, but here the term used is the collector's emitter
efficiency. The emitter efficiency again dependson the doping
densities of the p and N materials. The emitter efficiency and
the collector's emitter efficiency respectively are:

y i
i i | ii i i i i i • |

E D L n (E)

I + __nn "j_D _ tanh W/Lp
n p Pno

(lO)

YC

i

-- Di+-2, n tamh W-.-
L D L
n p Pno p

The current _ains are proportional to the emitter efficiencies, and
so are seen to be dependent on the doping levels_

TRANSMISSION LINE ANALOG

In using the transmission line as a model, it is necessary to

keep in mind that the relations of equations 7 and 8 are valid only

for current-charge relations. This requires that a two-section

transmission line approximation as shown in Fix. 3 is essentially a

charge control model, that circuit relations are only valid between

the charge on the capacitors and the currents. The terminal

currents are related to the terminal voltages by the Ebers and Moll

equations (2). The charges on the capacitors are related to the

terminal voltages in an exponential form:

qVE qVC

kT kT
0E = Ooe ; Oc = Qoe (ii)

- • i

i
Note that YCIco =

i,i

YEIEo •
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i I

_Vo _i__Vo
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C
o
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o
81 %/

Figure 3: Two section transmission line model of
a PNP intrinsic transistor.

The transmission line relations are written in terms of the capacitor

voltages:

IE= _-

IC ___E[I] qc= + C_r.[cc + 1] . GcVo

(12)

With 0E and 0c in the form given in equations (ii), a matchin_

of coefficients with the Ebers and Moll equations (2) show that

1-%
RC E =

V° = aN R IEO = aI RICO •

It has been shown [Ref. i] that aiIco = aNIEo , and for the two

section transmission analog it is necessary that the voltage source

connected to GE must be identical with that connected to GC so

i0



that both have the value V° . From further consideration of open
and short circuit conditions it mayalso be shownthat CV = 0 .

O O

By measuring the cutoff frequency of the short circuit current

_ains, aN or ai, it is further possible to determine that

RC =
1 1

m _ m

aN_ E alm c

which then determines that

IEO ICO

where mN is the cutoff frequency of aN and mI is that of aI .

It is to be noted that the parameters of the transmission line

model can not be uniquely determined, but that they must be expressed

in terms of one unknown. In the model shown in Figure 4 the diffusion

resistance R is chosen for the unknown parameter. For normal biasing,

with VE > 0 and VC << kT- _- , R is approximated by rE/m N = kT/qlEaN,

so that the emitter depletion layer block of Fig. h is replaced by a

short circuit. The collector depletion layer is an open circuit with

a voltage generator across the collector capacitance to account for

+

Figure h: Two section model with parameters related to the

Ebers and Moll equations.

C /

O

+

O

8 p
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modulation effects of the collector voltage on the base width, and

the collector current then bein_ the current through that generator

as indicated in Fig. 5.

, / _/o_, - r e '

o -'VvV,

o 1-
8"

Fiaclre 5:

I

/

ic
C

1

W-

Transmission line model of a normally

biased PNP transistor.

THE COMPLETE PHYSICAL MODEL

The complete model is obtained by imbeddin_ the intrinsic

transistor model of the previous section (Fin. 4) in the circuit

of Fig. 1. This results in a PNP model as shown in Fig. 6.

E

Figure 6: Physical model of a PNP transistor.

+
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The model of Fi_. 6 is a larKe signal model which is dependent

on the relations:

qV E

vE, = %IEo Rek-E-

qVc

VC, = aiIco Rek-_"

In reducing this model to an equivalent small signal equivalent circuit

by the use of differentials it is necessary to relate both

the reverse saturation currents (Ic0 , IEO) and the short circuit

current Rain (aN,a I) to the Junction voltages. It is to be recalled

that these parameters have relations to the base width of the forms

given in Eguations 9 and i0, and the base width in turn depends on the

widths of the depletion layers. The width of a depletion layer is a

fractional power function of the applied Junction voltage, so that the

chain rule must be applied to determine the small signal parameter

(such as _ in Fig. 5) relating to base width modulation by the

Junction voltage.

The variations of the Junction (depletion layer) capacitances

with their respective voltages was discussed in the section on other

Junction effects.

FIELD EFFECT TRANSISTORS

The monopolar devices called field effect transistors (FET's)

are different from the Junction transistors (bipolar devices) in that

the Junction transistor action is dependent on minority carriers and

majority carriers, while the FET is essentially a majority carrier

device. A qualitative physical model of an FET may be obtained from

physical reasoning based on the understanding of Junction behavior and

surface phenomenon [for instance see Ref. 7 or 8]. However the

development of physical models for these devices have not to this

author's knowledge been developed to the extent of those for the

Junction transistor. The model for the pre-pinchoff regionwas

essentially established by Shockley [Ref. 9], but little has been

done in the pinched off region of operation.

CONCLUSIONS

A large signal Junction transistor equivalent circuit may be

developed from a knowledge of the physical behavior of semiconductor

13



materials and Junctions. The parameters of such a model may be

determined by measurements of the Ebers and Moll short circuit

parameters and the cutoff frequencies. The value of the large signal

model based on physical phenomemon is that operation of the device

over its entire range of operation (excluding avalanche effects

which were not treated) may be predicted from a few static measurements

and a few frequency determinations.
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APPLICATIONS OF MODELS TO CIRCUITS

W. J. KERWIN

Ames Research Center, NASA

Moffett Field, California

INTRODUCTION

The various active device models for linear circuit application

are considered from the standpoint of simplicity of use, and examples

of their application to the design of an operational amplifier and an

emitter-peaked voltage amplifier stage are given.

MODELS FOR LOW AND MEDIUM FREQUENCY USE

For our purpose here we will consider only the common-emitter

models. Figure i shows the T model, the h parameter model; and the

y parameter model. The values of the resistors are given in ohms in

all cases. The data normally specified by the manufacturer include the

h parameters (either common-base or common-emitter) at a specific

voltage, current, and frequency (usually Vce or Vcb = 5 V, Ie = i mA,

and f = i Kcps), and occasionally the y parameters. These are usually

given as a function of frequency at Ic = 20 mA and Vce = 30 V. The T

parameters are usually not available from the manufacturer's data sheet;

however_ as can be seen in Figure i, the T model is the simplest of the

three models and the one most frequently used.

The relationship of the T parameters to the h or y parameters is

shown in Figure 2. These relations are all we need except for the case

of mixed parameters. It is frequently true that the data specified

include the common-base h parameters_ except for hfb _ and here hfe

is usually given. The equation for converting to hfb from hfe is also

given in Figure 2.

The operating conditions of the transistor are not usually Vc e = 5 V
and Ic = i mA. To convert to the actual operating conditions we use

the plots of the variation of the h parameters with collector current

and with collector-to-emitter voltage that are normally supplied by the

manufacturer. An example of the calculation of the operating h param-

eters of a 2NI132 for I c = 0.75 mA and Vce = 15 V is given in Figure 3_
and the T parameters are calculated from the operating condition h

parameters as shown. The approximation that hfe >> i has been made

in deriving the equations shown in Figure 3.

In some cases only approximate values of the T parameters are

needed. For this purpose the approximations shown below may be adequate.

A constant h is dependent on the particular device construction used

with a usual value between 2 and 5. Here_ the assumed value is _ = 3.

In addition we need the emitter base diode resistance rc = (q/kTle)

= (0.025/Ie) at 300 ° K. Substitution of these values into the equations

below gives the results shown. For many cases it is adequate to assume

that rd = _.

15



~ k - 1 ~ 0.0167
re = h re Ie

~ hfere ~ O.O0833hfe

rb - h Ie

ANALYSIS OF AN OPERATIONAL AMPLIFIER USING THE T MODEL

As an example of the use of the T model we will analyze the

operational amplifier shown in Figure 5. Nominal values of the circuit

parameters are included as a starting point. These may be changed

after analysis, of course, but it is important that they be included at

this point to give an idea of the magnitudes of the various terms in

the analysis. The T model parameters are then calculated for each

transistor at its respective operating point_ resulting in the equiv-

alent circuit shown in Figure 5. (All values of rd have been assumed

infinite for this example. ) The voltages and currents specified on

Figure 5 are used to develop the flow graph shown in Figure 6 which

shows the interrelations of all voltages and currents in this amplifier

circuit.

The flow graph is much too involved to work with at this point,

and illustrates a general principl% namely, perform simple combinations

and node eliminations before applying the general flow graph reduction

formula. In this case, we will assume that the transfer voltage ratio

eout/ein is the quantity of interest and we will simplify the graph
with that in mind. After a few simple reduction steps the graph shown

in Figure 7 is obtained. We now have only eight loops, but it can be

seen that even here the use of the general reduction formula would be

quite unwieldy. It is at this point, however, that we use the nominal

values of all parameters to simplify the determination of the voltage

ratio. If we look at the magnitude of the forward path terms, and of

the loop transmissions(Fig. 8) we see that L1, L2, Ls, L4, and L7 can

be neglected with an error of less than 1 part in lO_000 due to each

term. We then have only three loops left and we have n__oomultiple

products, so that application Of the general reduction formula is very

simple. This flow graph simplification technique is extremely impor-

tant as it makes the flow graph method much more practicable, and it

is the flow graph technique which allows this method of simplification
to be used. Note that in this case all of the forward path terms are

retained.

We now insert the literal values for these retained forward path

and loop terms realizing that even fairly large changes in the nominal

values will still keep an accuracy of the order of 1 part in 1,O00 since

we neglected only terms less than 1 part in i0,000. This results in

the transfer function shown, and when the nominal values are inserted

(with R s = O) we obtain a voltage gain of 2.0052. A comparison of this
calculated gain with the measured gains of six of these amplifiers,

using the same feedback resistors in each case, was excellent as indi-

cated in Figure 9. This amplifier has been constructed in hybrid

integrated circuit form and is shown in Figure lO.

16



HYBRID-_ MODEL FOR HIGH FREQUENCY USE

At higher frequencies the internal capacities of the transistor

can no longer be neglected. If we modify the T model to include the

higher frequency effects, we obtain a model which is not as convenient

to use as the hybrid-_ model. Our discussion here will therefore use

a simplified form of the hybrid-H model (Fig. ii). The values of Cob

and _o = hfe are normally given by the manufacturer as well as a high

frequency value of hfe from which _T can be calculated. One param-

eter, rbb' is usually missing, however. In some cases, Yi_, is plot-

ted versus frequency and an extrapolated value as _ _ _ glves the

reciprocal of rbb'.

ANALYSIS OF AN EMITTER-PEAKED STAGE

As an example of the use of the hybrid-_ model we will analyze

an emitter-peaked stage. The circuit schematic and the hybrid-_ equi-

valent circuit are shown in Figure 12 with a few defined relations.

This circuit is analyzed by flow graph means in Figure 13. If we now

put in nominal values (Fig. 14) and eliminate terms less than 0.i_, we

obtain, with literal values, the transfer function shown in Figure 14.

Then, substituting values for all except We, we obtain a 1-zero, 2-pole

function which can be modified by a change of Ce only while all other

components are kept at their nominal value.

Figure 15 compares the bandwidth resulting for various values of

C e and therefore we. It can be seen that the maximally flat 2-pole,

1-zero case shows a great improvement over the other 9ossibilities,

with a predicted value of Ce = 320 pF. In an experimental test a

value of 330 pF gave maximally flat response, and a bandwidth of

5 Mcps. However, the model assumed a value of _ based on minimum

specifications for the 2N2484 and it would be reasonable to expect

that most transistors would exhibit considerably better response, as
proved to be the case experimentally.

17



rd (_) hie

_ hr_V_(_Ib _ re Ic
i

o ®
o c

T MODEL

(_)0 Ib"_"

"1
Vbe _12Vce

®
y MODEL

iVbe Y_

Ic _)

felb _ Vce

®
h MODEL

._--I c (_)
0

I"
Vc,

1_
o

Figure 1.- Common emitter models.

rb

rd

rd

_rb [_ _ I 0 _

IT ® ire
o o

COMMON EMITTER h COMMON BASE h y

hie
(I+hfe ) hre

hoe

hre

ho_" hib

I

hoe

hfe

hfe

hfb=-i+hf e

hrb

hob

hrb(l+hfb)

hob

I+hfb

hob

hfb

I+hfb

I._)__(I+Y2le Ym2e1

Ylle\ _ /

Yl2e

ay

Ylle

Ay

Y21e

Ylle

AY=Y12eY22e-Y12e Y21e

Figure 2.- T parameters from h or y parameters.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AMES RESEARCH CENTER, MOFFETT FIELO, CALIFORNIA



2NII32

SPECIFICATIONS SPECIFICATIONS SPECIFICATIONS OPERATING CONDITION
AT I mA, 5 V AT .75 mA AT 15 V h PARAMETERS

hfe = 57

hib = 27D,

hrb = 2 x I0 -4

hob = .3x 10-6"G

x0.98 x I. I

x 1.4 x 1.01

x 1.0 x0.73
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38.29,

1.46x10 -4
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Figure 3.- Typical conversion from h to T parameters.
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AMPLIFIER 
NUMBER 
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CALC. MEAS. CALC. MEAS. 

2.0042 2.0042 116M 160M 
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_ TOPOLOGICAL ANALYSIS OF PASSIVE NETWORKS

" SHU-PARK CHAN

University of Santa Clara

Santa Clara, California

In this paper we hope to give a brief introduction to the appli-

cation of network topology to the analysis of passive networks. First,
a minimum set of definitions is introduced. Some theorems in network

topology are stated without proof* and topological formulas for

computing various network functions are listed. Finally, a number of

examples are given to illustrate the usefulness of these topological

formulas in network analysis and to compare them to the conventional

analysis methods.

INTRODUCTION
i

Network topology (or network graph theory) may be described as a

study of electrical networks in connection with their non-metric

geometrical, namely, topological-properties through the investigation

of their graphs. The application of graph theory to electrical

networks can be dated back to the 19th century when, in 1947, Kirchhoff

applied the topological concepts to formulate the loop-basis and node-

basis network equations. The application of topological methods to the

analysis and synthesis of electrical networks had not made much

significant advancement until the last decade. During that period,

network topology was gradually made known and recognized as the

foundation for the modern network theory.

DEFINITIONS
l i ,i

Consider the passive network N (a bridged-T network with a load Z 5)
with a voltage driver E as shown in Fig. I. In this network, there

are 4 nodes, (Vl, V2, V B and V4) and 5 branches (ZI, Z2, Z3, Z4, and Z5).

If each of the 5 branches is replaced by a line segment with the 4 nodes

remaining unchanged, we obtain a graphical representation of N as

shown in Fig. 2. Such a graphical representation is known as the

linear graph (or simply _raph) of the network N, and each of the 5

line segments is called an _of the graph G, corresponding to a

branch in N . The four nodes in O are called the vertices of O .

Having shown how a graph is obtained from a given electrical network,

i • | i i |l

The interested readers may find all the proofs and derivations in
Ref. [i] or Ref. [2].
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Fig. 2. The _Faph G of the network N of Fig i.

we now define some of the topological terms as follows.

Definition l. Linear Graph and Its Edges and Vertices.

A linear_raph(or simply a_raph) is a set of line segments called

edges and points celled vertices, which are the endpoints of the edges,
interconnected in such a way that the edges are connected to (or inqident

with) the vertices.

D_finiti°n 2" Degree of a Vertex.

The degree of a vertex of a graph is the number of edges incident

with that vertex.

Definition 3. Sub_raph.

A subset G. of the edges of a given graph G is celled a subgraph
i

of G . If G i does not contain all of the edges of G, it is a proper

subgraph of G .
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Definition 4. Path and Path-set.
I i i i i i u

A path is a subgraph having all vertices of degree 2 except for

the two endpoints which are of degree 1 and are called the terminals

of the path. The set of all edges in a path constitute a path-set.

Definition 5. Circuit (1.o?p) and Circuit-set !loop-set).

If the two terminals of a path coincide, the path is a closed path

and is called a circuit (or lo__!. The set of all edges contained in a

circuit is called a circuitNset (or loop-set).

Definition 6. Connectedness.
i i

A graph or subgraph is said to be connected if there is at least one

path between _ pair of its vertices.

Definition 7. Tree.

A tree of a connected graph G is a connected subgraph which

contains al-'-"lthe vertices of G but no circuits. The edges contained

in a tree are called the branches of the tree.

Definition 8. 2-tree and k-tree.
I i i

A 2-tree of a connected graph G is a (proper) subgraph of G
i

consisting of two unconnected circuitless subgraphs, each subgraph

itself being connected, which together contain all the vertices of G .

Similarly, a k-tre._e is a subgraph consisting of k unconnected circuit-

less subgraphs, each subgraph being connected; which together include all

the vertices of G .

Definition _. k-tree Admittance Product.

The k-tree admittance product of a k-tree is the product of the
i

admittance of all the branches of the k-tree.

Example.

The graph G shown in Fig. 2 is the graph of the network N of

Fig. 1. The edges of G are el, e2, e3, e4, and e_ ; the vertices of

G are V1, V2, V_, and V 4 . A path of G is the s_bgraph G1 consisting

of edges el, e2,_and e5 with vertices V 2 and V 4 as terminals. Thus,

the set (el, e2, e5 ) is a path-set. With edge e4 added to Gl, we

form another subgraph G2 which is a circuit since a__sfar a__s C.2 i_

concerned all of its vertices are of degree 2. Hence the set
I

(el' e2' e4' e5} is a circuit-set. Obviously, G is a connected graph

since there exists a path between every pair of vertices of G . A tree

of G is the sub_raph consisting of edges el, e2, and e 4 . Two other

trees of G are {e2, e3, e4} and {el, e3, e 5} . A 2-tree of G

is (el, e4} ; another one is {e2, e 5) ; and still another one is (e2, e3).

Note that both {el, e4) and (e2, e 5) are subgraphs which obviously

satisfy the definition of a 2-tree in the sense that each contains two
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disjoint circuitless connected sub_raphs, both of which together
includes all the four vertices of G . On the other hand, {e2, e3}
is Just one connected subgraph which contains only three vertices of O.
Thus, {e2, e3} does not seemto be a 2-tree. However, if we agree to

consider {e2, e3} as a subgraph which contains edges e2 and e3

plus the isolated vertex V4, we see that {e2, e3} will satisfy the

definition of a 2-tree since it now has two circuitless connected

subgraphs with e2 and e 3 forming one of them and the vertex V4

alone forming the other. Moreover, both subgraphs together indeed

include all the four vertices of G . It is worth noting that a 2-tree

is obtained from a tree by removing any on__eof the branches from the

tree; and, in general, a k-tree is obtained from a (k-l)-tree by

removing from it any one of its branches.

Finally, the tree admittance product of the tree {el,e3,es} is

yl,Y3,y 5 ; the 2-tree admittance product of the 2-tree (e2,e 3} is y2y 3

(with the admittance of a vertex defined to be 1).

Consider a network N

NETWORK FUNCTIONS
i , ,i

with n independent nodes as shown in Fig. 3.

? Jj
V,÷ V2÷

• NODE

n

Fig. 3. A network N with n independent nodes

The node i' is taken as the reference (datum) node. The voltages VI,

V2, ... V (which are functions of s) are the transforms of the node-pairn

voltages (or simply node voltages) vl, v_, ..., v (which are functions

of t) between the n nodes and the-reference no_e l' _ith the plus po-

larity marks at the n nodes. Usin_ the node analysis method developed

in Chapter 7, we obtain the n independent node equations:
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_inVn = I1

_2nVn = 12

(i)

,_nlVl + _n2V2 + ... + _nn V = In n

where for any J (J = i, 2, ..., n), Vjj is the sum of the admittances

of all the branches connected to node J ; and for any J and k

(J # k; J,k = 1,2,...,n), %_Jk is the negative of the sum of the ad-

mittances of all the branches connected between nodes J and k (thus

all such branches are connected in parallel across the two nodes). Fur-

thermore, I_ is the sum of the transforms of the known current sources
at node J , and Vj is the transform of the voltage at node J with

respect to the reference node i' .

Written in matrix form, (i) becomes

%j"'" Vl

ooo

or, in abbreviated matrix notation,

Y V =I
n n n

where Y
n

V2

V
n

iI1

12

I
n

is the node admittance matrix, V
n

(2)

(3)

the n-vector of the node

voltage transforms, and In the n-vector of the transforms of the known

current sources as expressed in (2).

Solving for the node voltages upon the application of Cramer's rule,

we find

Vj = AiA-_Ii + "_'I2 + ... + _ 1"In (J = 1,2, .,., n) (b,)

i i i i i i i i

An n-vector is defined as a column matrix of order n x 1 .
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where A is the determinant of the node admittance matrix Y ,n
and Ajk is the (J,k)- cofactor of A .

Next, assumethat the network N is a relaxed passive one-port (so
that the initial conditions are all zero) and drive it with a single cur-
rent source I I at nodes i and i' as depicted in Figure 4.

_+

A PASSIVE ONE-PORT

WITH ZEPO /NITIAL

C ONDI T/O/VS.

Fig. h. The network N driven by a sinffl9'current source

Thus, with the conditions

II = I , and 12 = 13
gl

Equation (h) becomes

Vj = AAl-_II

from which, by letting

= ... = In = 0 ,

(J = i, 2, ..., n)

J = i, we obtain

Hence, the driving-point impedance function Zd(S)

namely driving-point admittance function Yd(S)
from (6) as

Zd(S ) __A_= AllA

(5)

(6)

and its reciprocal,

are readily obtained

(7)
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and

Yd(s)=_-A11
(8)

respectively.

We see from (7) and (8) that both

sed in terms of the determinant of Y
n

Zd(S) and Yd(S) can be expres-

, A , and its (i,i) cofactor, AIIJ

Next, consider a passive two-port driven by two current generators

I and I at ports i and 2 respectively, as shown in Fig. 5.

gl g2

I
"--L

I 2

V,:V,. V_+ - ---+V2 V_, V_2,=Vo

,:3=I_'
I'_ I_E_ NODE

4-- 1"2

-'--I3=L, ='-Z2

Fig. 5. A passive two-port driven by two current generat0rs

The following observations are noted:

have

(i) Since there are only two sources, namely I
gl

Ii= I
gl

12-1
g2

13 = 12' = -12

and I , we

g2

I,_ = 15 = ... = In = 0

(2) The four external nodes are i, 2, 2' and i' with i' chosen as

reference node.
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(3) With the notation used in the figure, we write

Vi = VI and V° = V22' = V2 - V2' = V2 - V3

(since node 3 = node 2')

(1o)

Thus, from (h) (by letting J = i, 2, and 3) and with the conditions

listed in (9) and (10), the following results are obtained:

= CAll) + (A21 "A A2'l)V i .-'_-.I1 12 = ZllI 1 + Zl2I 2

-AAI2 ' A22VO (A12 )I1 + (A22 + A2' 2' - ' - A '= , ..A 2 2)12 = z2111 + z2212

(ii)

where

Vi I All
Zll = I-_ = T ; (a)

12 = 0

J

i A -- !

Vo "12 AI2

z21 II A

I2=0

; (b) (12)

I

vi I _21- A2,1
z12 = _'2 = A ; (c)

IIi=0

and
I

v I - (d)o A22 + A2'2' - A2'2 A22'

z22 12 A

I1
=0

and are called the open-circuit impedances of the two-port.

If we solve (ii) for II and 12 using Cramer's rule, we find
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ii = z22 Vi +-z12 V
Az A2 o

"z21 Vi + _ VI2 =-_-- o
Z Z

= YllVi + YI2Vo

= Y21Vi + Y22Vo

(13)

where the y's are the short-circuit admittances of the two-port:

and

II

Yll : V-_.
1

12

Y21 = _i

II

YI2 :---V
0

12

Y22 = _-
0

V =0
0

V =0
0

Vi=O

V. = 0
I

A z : [{zll

{z21 z22

122

= "Z- ; (a)
Z

-z21
: ---- • (b)

A
Z

-z12
= ---- • (c)

A
Z

Zn (a)
: a ;

Z

= ZliZ22 - z12z21

(1_)

(15)

Substituting (12) into (15) for a reciprocal two-port (so that z12 : z21

and YI2 = Y21 ) and after regrouping the terms we get

i

A z ='_"_" (alla22 - A122) + (AllA2,2 , - A12, 2) - 2(AllA22 , - A12,A21)

(16)
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Next, recall the following identity for determinants

AabAcd - AadAcb = Aabcd (17)

where a, b, c, d are positive integers less than n (n being the order

of the determinant A ) and Aabcd is the determinant obtained from

by deleting rows a and c and columns c and d from _ . Upon

the application of (17), we can rewrite (16) as

A z = _ (AAI122 + AAII2,2, - 2AAI122 ,) (18)

Substituting (12) and (18) into (14), and simplifying, we find the

desired expressions for YlI' YI2(=Y21 ) and Y22 :

A22 + A2, 2, - 2A22 ,
= , . (a)

Yll AI122 + AI12,2, - 2AI122 ,

AI2, - AI2
= , , (b)

YI2 = Y21 AI122 + AI12,2, - 2AI122 ,
(19)

Y22 =

All
|

AI122 + All2, 2, - 2AI122,
(c)

Expressions in terms of network determinants and cofactors for

other network transfer functions may be derived in a similar manner.

Such expressions are given here also:

oV AI2 - AI2 ,

Zl2 _YT. = ' A'
I

Vo AI2 - AI2.'.
c12 A VF = "

l All

(transfer impedance function) (a)

(voltage-ratio transfer function) (b)

- (20)
AI2 AI2') (transfer admittance function)(c)

YI2 = YLGI2 = YL ( ' All

a12 = YLZI2 = YL (A_2 - AI2') (current-ratio transfer function)
A (d)

I iii

See, for example, Determinants an.d Matrices, by A. C. Aitken, 8th Ed.,

published by Interscience, 195_.
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The topolo_ical formulas for the various network functions of a

passive one-port or two-port are derived from the following theorems:

Theorem i . Let N be a passive network without mutual inductances.
ml

The determinant A of the node admittance matrix Y is equal to the
n

sum of all the tree-admittances of N, where a tree?admittance product

T_i)(y)" is defined to be the product of the admittance of all the

branches of the tree T (i) . That is,

A =det Y = z T(i)(y) • (21)
n i

Theorem 2 . Let A be the determinant of the node admittance matrix

Y of a passive network N with n+l nodes and without mutual

i_ductances. Also let the reference node be denoted by i' . Then the

(J,J) cofactor Ajj of A is equal to the sum of all the 2-tree-

admittance products T2j ,i' (y) of N, each of which contains node J

in one part and node I' in the other. That is,

(k)(y) (22)

= Z T2jAjj k ,i'

where the summation is taken over all the 2-tree-admittance products of

the form T2j (y),i'
,

Theorem 3 • The (i,J) cofactor Aij of A of a relaxed passive net-

work N with n independent nodes (with node l' as the reference node)

and without mutual inductances is given by

= Z _(k) (y) (23)

AiJ k T2iJ,l'

where the summation is taken over all the 2-trees-admittance products

of the form T2 (y) with each containing nodes i and J in one
iJ,l'

connected port and the reference node I' in the other.

ml i ml i i

For a complete proof of each of these theorems the interested reader

may refer to either Ref. [i] or Ref. [3].
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For example, the topological formulas for the driving-point
function of a passive one-port can be readily obtained from (21) and
(22) in Theorems (1) and (2) as stated in the next theorem.

Theorem 4. With the same notation as in Theorems (I) and (2), the

driving-point admittance Yd(S) and the driving-point impedance Zd(S )

of a passive one-port containing no mutual inductances at terminals

i and l'are given by

Z T(i)(y) Z T_ k) (y)

A i nll k 1,1' (23)

Yd(S) = i_i = Z T(k ) and Zd(S) =--_-= _ T(i)(Y)
k 21,1'(Y) i

respectively.

For convenience, we define the following shorthand notation:

and

(a) V(Y) _ r T(i)(y) -

i

(b) Wj,r(Y) A kZ T2j,r(y) =

Thus, (23) may be rewritten as

sum of all tree-admittance products (24)

sum of all 2-tree-admittance products

with node J and the reference node

r contained in different parts

wI I,(Y)
v!Y) and Zd(S) = 'V(Y) (25)

Yd(S) = Wl,l,(y)

In a two-port network N, there are four nodes to be specified,

namely nodes 1 and l' at the input port (1,1'), and nodes 2 and

2' at the output port (2,2'), as illustrated in Fig. 6. But, for a

2-tree of the type T2. , only three nodes have been used, thus
lJ,l'

leaving the fourth one unidentified.

With very little effort, it can be shown that, in general, the

following relationship holds:

Wij ,i' (Y) = WiJk,l' (Y) + Wij ,kl' (Y)

or, simply,

Wij,l, = WiJ,l, + WiJ,kl, (26)

where i, J, k, and i' are the four terminals of N with i' denoting

the datum node. The symbol WiJk,l, denotes the sum of all the 2-tree-

admittance products, each containing nodes i, J, and k in one

connected part and nodes k and i in the other.
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:i 2.

N

___f 2 '_

Fig. 6. A loaded passive two-port N .

We now state the next theorem.

Theorem _. With the same hypothesis and notation as stated earlier in

this paper,

AI2 - AI2 , = WI2,12,(Y) - WI2, 1,2(Y) (27)

It is interesting to note that (27) is stated by Percival in the

following descriptive fashion:

l'×)AI2 - AI2' = W12',1'2' - W12',1'2 = , 2' i' 2

which illustrates the two types of 2-trees involved in the formula.

Hence, we state the topological formulas for all , z12 , and z22 in
the following theorem:

Theore m 6. With the same hypothesis and notation as stated earlier in

this Chapter,

WI,I,(Y)
Zll = V(Y) (a) ; z12=z21 =

and
w2.2,(Y)

z22 = v(Y) (c)

wIz,1,2,(Y)-Wm2,1,2(Y) (b)
V(Y)

(28)

I I ill |i| I |,,..

See Ref. [4] for a detailed discussion.
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Weshall now develop the topological expressions for the short-
circuit admittance functions. Let us denote by Ua,b,c(Y) the sum
of all 3-tree-admittance products of the form T3 (y) with

a,b ,c
identical subscripts in both symbols to represent the samespecified
distribution of vertices, Then, following arguments similar to those
of Theorem5, we readily see that

AI122 = _ T(i) (Y) AUI,2,1,(Y) (a)
i 31,2,1'

= Z T(j) (y) AUI,2,,I,(Y) (b)
AI12'2' J 31,2',i'

(29)

= Z _(k) (Y) AuI,22,,I,(Y) (c)AI122' k T31,22' ,i'

i' 2 2' are the four terminals of the two-port with I'where l, , ,
denoting the reference node (Fig. 6). However, we note that, in (29 (a))
and (29(b)) only three of the four terminals have been specified. We
can therefore further expand U1,2,1, and U1,2_l, to obtain the
following :

- + U1 i'
AI122 + AI12'2' 2AI122' = U12',2,1' + UI,2,1'2' + U12,2',I' ,2', (23@;

For convenience, we shall use the short-hand notation 2 U to denote the

sum on the right of (3_). Thus, we define:

ZU A UI2,,2,1, + UI,2,1,2, + U12,2,11,+ UI,2, 1,2
(30)

Hence, we obtain the topological formulas for the short-circuit

admittances as stated in the followingtheorem:

Theorem 7. The short-circuit admittance functions Yll' Yl2' and Y22

of a passive two-port network with no mutual inductances are given by

W12'II'2 - W1211'2'....(a) ; =
Yll = ZU YI2 = Y21 ZU

Y22 = ZU

where ZU is defined in (30) above.

(b) ;
(3l)
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Finally, following similar developments, other network functions

are stated in Theorem 8.

Theorem 8. With the same notation as before,

Zl2(S) = W1211'2' V- W12'Ii'2 (a)

YI2 (s) = YL (W12'I'2' -W12',I'2) (b)
WI,I,

Ql2(S)= w12,1'2'[w12',1'2 (c)
WI,I'

_12 (s) = YL (WI2'I'2'V- W12''I'2) (d)

(32)

EXAMPLES

Example i. Consider the two-port
C of N is shown in Fig. 7(b).

N as shown in Fig. 7(a). The graph

i _----J
S

i i o
2 5

-----2

Fig. 7. (a) A passive two-port N,

The admittances of the 6 branches of

(b) The 5Taph

N are

C of N

1 1

Yl = _ii - CI ; Y2 = sC2 ; Y3 = _3 -=G3

1 1

Y4 = _ -- C'4 ; Y5 = sC5 ; Y6 = _6 - G6

h0



The determinant
takin_ i' as the reference node, is given by

1

2

A =2'

A of the node-admittance matrix Y
n

i 2 2' 3 h

Yl 0 0 "Yl 0

O Y6 0 0 Y6

o o (y4+ys) o -Y5

-Yl 0 0 (YI+Y2+Y3 ) -Y3

0 -Y6 -y 5 "Y3 (Y3+Y5+Y6)

of N,

which, when expanded, yields

2 2 2 2

A = ylY3yhy6 + ylyhy5y 6 + YlY4Y 6 + YlY2YBYhY6 + YlY2YhYsY 6

2 2 2 2
+ YlY2YbY 6 + ylYBYhY6 + YlY3Y4Y5Y 6 + YlY3Y4Y6 + YlY3Y5Y6

22 2 2 2 2

+ YlY5Y6 + YlY5Y6 + YlY2Y3Y5Y 6 + ylY2YsY 6 + ylY2Y5Y 6

2 2 2 22 2 2
+ ylY3Y5Y6 + YlY3YsY6 + YlY3Y5Y6 + YlYsY6 + yly4Y6

2 2 2 2 22. 2

+ YlY5Y6 - ylY3y4Y6 - ylY3Y5Y6 - ylY5Y6 - ylY2Y5Y 6

2 2 2 2 2 2 2

- YlY3Y5Y6 - ylY4Y6 - YlY2Y4Y6 - ylYBy4y6 - ylYsY6

2 2 2 2 2 2
- YlY2YsY 6 - ylY3YsY6 - YlY3YhY6 - yly4ysY 6 - ylY4Y6

2 22 2 2

- YlY3Y5Y6 - YlY5Y6 - Yl y-y_bb

After cancellation of terms, A reduces to

A = ylY2Y3y4y 6 + ylY2Y3YsY 6 + ylY2y4y5y 6 + YlY3YhY5Y6

Similarly, after expansion and cancellation of terms in each cofactor, we get

All = YlY3y4y6 + YlY3YsY6 + YlYhY5Y6 + Y2YBY4Y6 + Y2Y3Y5Y6 + Y2YhY5Y 6 +Y3Y4Y5Y 6

AI2 = ylY3yby6 + YlY3Y5Y6 ; a12, = ylY3Y5Y6 ;

A22 = ylY2Y3Y 4 + YlY2Y4Y 5 + YlY2YbY6 + YlY3YhY 5 + YlY3Y4Y6 +YlY2Y3Y5+YlY2Y5Y6

+YlY3Y5Y6 ;
A2' 2' = ylY2Y3Y 6 + YlY2Y5Y 6 + YlY3Y5Y6 ;

A22, = _ YlY2Y5Y6 - YlY3Y5Y 6
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Hence9

= All = YlYBYhY6+YlYBY5Y6+YlYhYsY6+Y2YsYhY6+Y2YsY5y6+y2yhy., ., .... , , . ,,.. .. ,.,, ,, , .5Y6+YBYhY5y6'

Zll A yly2yByhy 6 + ylY2yBy5y 6 + ylY2yby5Y6 + ylYBYhY5Y 6

AI2 - AI2,

z12 = z21 = ' A =
y!.Y,By y6

| i i I I 1 , i i J

YlY2YsYbY 6 + YlY2YBY5Y 6 + YlY2YhY5Y 6 + YlYBY4Y5Y6

A22 +A2, 2, - 2A22 ,

z22 = ' A' ' (33)

(a)

(b)

= YlY2YBY4tYlY2YBY.5 +YlY2YBY6 +YlY2YhY 5 +YlY2Y_Y.6..tYlY, By4Ys. +Yl,YBY5Y6

YlY2YBYhY 6 +YlY2YsY5Y 6 +YlY2YhY5Y 6 +YlYBYhY5Y6

Finally, substituting the admittance values into these expressions, we

obtain the following results:

(C2G3C_,G 6 +C2G_C_G6 )s2 + (GIG3C5G6+GIG_CsG6+C2G3G_G6+G3GkCsG6),, ,, , _, ,,

Zll =

(CIC2G3C5G 6 +GIC2GhCsG6)s2 +(GIC2G3G_G 6 +CIG3GhC5G 6)

Z12 = z21 =

z22 =

__ G.BGhG6
i ii i i | | i i| i i i

(C2G3C5G6÷C2G_C5G6)s2 ÷ (C2C3G4G6÷G3G_C5G6)s

(%%% + (c 57 +c27  6,.%%% +,of
i • | I i i i

(C2GBC5G 6 + C2ChC5G6)s2 + (C2CBOhO 6 + OBChC5O6)s

Next, we calculate the short-circuit admittance functions.
see that

(yh + ys)

0

-Y5

(Yl

0 -Y5

+ Y2 + Y3 ) -Y3

-Y3 (Y3 + Y5 + Y6 )

(c)

s +GIG3G4G 6

S

(a)

(b) (3_)

)s + G3GhG 6

We (c)

Y6 0 -Y6
AI12,2, = 0 (Yl + Y2 + Y3 ) -Y3

-Y6 -Y3 (Y3 + Y5 + Y6 )

I 0 0 -Y5
All22, = 0 (Yl + Y2 + Y3 ) -Y3

"Y6 -Y3 (Y3 + Y5 + Y6

1_2



After expansion and cancellation of terms, we _et

Ai122 =

All2' 2'

All22'

All22

YlY3 yh + YlY3Y5 + Y2Y3Y& + Y2Y3Y5 + YlYhY5 + Y2YhY 5 + YlYhY6

+ YlY5Y6 + Y2Y4Y6 + Y2Y5Y6 + Y3Y4Y 5 + YBY4Y6 + Y3Y5Y6

= YlY3Y6 + Y2Y3Y6 + YlY5Y6 + Y2Y5Y6 + Y3Y5Y6

= yzysY6 + y2ysY6 + y3YsY6

+ Al12, 2, - 2A1122, : yly3y_+ yzy3Y5

+ YS#4 ÷ Y##5

+ Y2YhY6 + Y3YhY 5

Thus I

A22 +A2, 2, - 2A22 ,

Yll = AI122 + AI12,2, 2AI122 ,

+ YlY3Y6 + YlYhY 5

+ Y2Y3Y6 + Y2YhY 5

+ Y3Y4Y6

+ YlY4Y6

y y y y +Y Y Y Y +YY Y Y +Y Y Y Y _ Y Y Y +Y Y Y Y +Y Y Y Y
1 2 3 4 12 3 5 .12 3 6 1"2 4 5 1 2 4"6, _ 3 h 5 i'3 416

Y Y Y4+Y Y Y +v Y Y +Y YhY +Y Y Y +Y y Y +Y y v +y Y Y +y y Y +y Y Y1 3 "1 3 5 "1 3 6 1 "5 "i 4 6 "2 3 4 2 3_5 2"3 6 2 4 5 2 4"6

(a)

(35)

+ y3y4y5 ÷ yBy4y6}

A12, - AI2
i i i | i

YI2 = Y21 = AI122 + AI12,2, - 2AI122 ,

-YlY3YhY6

" '' ' ' 4" 'y y y +y y y +_ _v y +y y y +y y Y +y y Y Y Y Y
I i 3"h 1 3 5 "i'3_6 1 h'5 1 4 6 2 3 h'2 3 5

+ Y2Y3Y6+Y2Y4Y5 + Y2Y4Y6+Y3Y4Y5+Y3Y4Y6 }

All

Y22 = AI122 + All 2,2, - 2AI122'

(b)

YlY3Y4Y6+YlY3Y5Y6+YlY4Y5Y6+Y2Y3Y,h.Y6+Y2Y3Y5Y6+Y2Y4YsY6+Y3YhY5Y6
-,- ....... ,m l n i

y y y +y y y +y y y +y y y +y _v y +y y y
{ 134 135 136 1 k 5 i_4 6"2 3 h

+y y v +y y y +y y y +y y y +Y Y _v +y y2 3"5 -2"36 2 4 5 2 4 6'3 4_5 3 4-6}

(c)
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With the admittance values substituted into these expressions, we find

Yll =
{(C2O3C5+C2GhC 5)s2 + (C,IG3C5+GIGhC5+C2G3Gh+C2G3G6+C2GhG6+GBGhC 5)s

+ (GIG3Gh+GICBG 6 + GIG4G6+G3G4G6)} (a)

YI2 = Y21

i ,i il ................. '' Jill .-

{(C2G3C5+C2GhC5)s2+(GIG3C5+GIG4C5+C2G3G4 + C2G3G6+C2GhG6+C3C4C5 )s

+ (GIG3Gh+GIG3G6+GIChC6+GBC4C6)

(b)

and

Y22 =

(C2C3C5C6+C2C4C5C6)s2+(CiC3C5G6+ClghC5C6+C2C3ChC6+C3ChC5C6)s+CIC3C4C6
ii I ii i ili ilill i ii ii i i i |,

{(C2G3C5+C2ChC5)s2+(CIC3C5+CIGhC5+C2C3Ch+C2G3C6+C2G4C6+C3ChC5 )s

+(CIC3C4+CIC3C 6 + GIGhG 6 + C3C4C6) }

Example 2. In this example, we shall calculate the open-circuit and the
short-circuit network functions of the two-port shown in Fi_. 7(a).

(Example 1). From the graph C of the network (Fi_. 7(b)_ we obtain the

set of all trees of C as shown in Fi_. 8.

2 2 5

L,_ i L

6

F
2 I

i_ -i

_---2 _ 3 "I"-- 6 "4

5

..],

Fig. 8. The set of all trees of C
i il i i



Thus, from Fi_. 8, we _et

V(Y) = ylY2Y3y4y 6 + ylY2Y3YsY 6 + ylY2yhysy 6 + ylY3yhysY6

Next, we short vertex i to vertex i' to obtain GII,, which is shown
in Fi_. 9.

5 4

2 S

I,I" 2

2
6

Fig. 9. The 6raph GII , fo.._rWll ,.

The trees of GII , are shown in Fig. lO.

-- F-_n- 6--
i 5

\ L _._L
2

r-_-r-_ -- 1 V _-
2 5" 2 5 5"

Fi_. i0. The. set of all..trees., of.. C,ll , .

Hence, we get

Wl,l' = YlYBYhY6 + YlYBY5Y6 + YlYhYsY6 + Y2YBYhY6 + Y2Y3Y5Y6+Y2YbY5Y6+Y3YhY5Y6

To obtain W2,2, ,

as shown in Fi_. ii.

£
i

we short-circuit vertex 2 to vertex 2'

3 4

2 5 6

The graph G22 , fo__r W2,2,

to obtain c22,,
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The trees of G22 ,

2 2 6

I 1

(which are 2-trees T22,2 '
of G) are shown in Fig. 12.

U- -h
2 j 2 5

2

Fi_. 12.

Hence, we find

5

The set of all,.trees, of G22 , •

W2,2' (Y) = YlY2Y3Yh+YlY2Y3Y5+YlY2Y3Y6+YlY2YhY5 +yly2y4y6+yly3y4y5+yly3y4y6

of G as shown in Fix. 13.

Next, we find the set of all 2-trees T212,1,2,

The set of all 2-trees T212 for the graph G in this example happens
',i'2

to be an empty set.

Thus,

and

z22

Fi n . 13. The set of all 2-trees T212 of Gi im

,i'2'

W12,1,2 , = ylY3y4y 6 and W12',i'2 = 0

Zll V

Yl y3 y4y6+yl y3 ySy6+yly4 y5y6+y2 yB y4y6+y2 y3 ySy6+y2y4 ySy6 +y3 y4 y5y6
-- i I -- i i I i i

YlY2Y 3YhY6+YlY2Y3Y5Y6+YlY2Y4Y5Y6+YlYBY4Y 5Y6

W12 1'2'" W12' 2 (a)! , , II1'
z12 = Z21 = V

YlY3 y4y6 (b) (37)
-- i i I i i i "_ I

YlY2Y3YhY6+YlY2Y3Y5Y6+YlY2YhY5Y6 YlY3YhY5Y6

V

YlY2 y,Syh+yly2yBy5+yly2yBy6+yly?y4y 5+yly2y4y6+y IySy 4y5+ylyBy4y6__ ., .

Y Y Y Yh y +Y Y Y Y Y +Y Y Y Y Y +Y Y Y Y Y612 3 6 12356 12 4 5 6 13 4 5

(c)

_6



Finally, we shall obtain the short-circuit parameters topologically.

Since a 3-tree of G contains 3 edges, we find, examining G in

Fi_. ii, one 3-tree TBI 2 , as shown in Fig. lh(a), nine 3-trees
',2,1'

T31 , as shown in Fig. lh(b); one 3-tree T312 , as shown
,2,1'2' ,2' _i'

in Fi_. lh(c); and one 3-tree T 3 , as shown in Fi_. 14(d).
1,2' ,1'2

3 4I --'*---3--.

i 5 4 2

I
5
!

f • _ Z'

(a)

z I t 3 4 2 I z..= 1__.• "--= I=_I • 3

f l ,
I 5 I

I £--- *J2' I
£--4.--. 2'

3 4

2

fL4.-., 2 o

2

5

2 S

z.

"--- _ _-_'-- 6 ._.l °

I

J'----4---o 2'

I. 3 4 2. I
• •I 1 ,

2 5
I

3 4-
"--- _- ---.-,--- 3 ---_--- 6 ---., 2

Fi_. lb.

(5)

• 2 l

(c)

The B-trees of G" (a) T312, 2,1 '

(d)
T31,2' ,1'2

5

r---s
2

3 4

$

£'""-4 J 2'

4 2
o--.. 0 ....m

2

J'['--4 ---- 2'

4
• 6---_ 2

e2'

, (c) TBI2,2,,I,

_7



Thus, from (30) and Fi_. lh we get:

ZU 6
: U12,,2,1, + UI,2,1, 2, + U12,2' ,i' + Ul,2' ,i'2

= ylY3yh+ylY3Y5+yly3y6+yly4y5+ylyhy6+y2Y3yh+y2Y3Y5+y2Y3Y6+y2yhy5

+ y2yhY6+y3yhys+Y3Y4Y6

Also, earlier in this example, we have already obtained the expreJsions

for Wl,1, , W2,2, , W12,1,2,, and W12, l, 2 . Therefore, we get

Yll ZU

YlY2Y 3Y_+YlY2Y 3Y 5+YlY2Y3Y6+YlY2YhY 5+YlY2Y_Y6+YlY3Y4Y 5+YlY3Y4Y6

{YlY3Y4+YlY 3Y5+YlY3Y6+YlY4Y5 +YlY4Y6+Y2Y3Y4+Y2Y3Y5+Y2Y3Y6+Y2YhY 5 Y2YhY6

+ yByhy 5 + yBy4y6} (a)
f ! u W ! !

w12 ,i2. 12,12
YI2 = EU = Y21

-YlY3Y4Y6
l| i| t t • t i, lt , |t .....

{YlY3Yk+YlY3Ys+YlY3Y6YlYhY5+YlY4Y6+Y2Y3Yh+Y2Y3Y5+Y2Y3Y6+Y2Y4Y5+Y2Y4Y6

W !

Y22- EU

+Y3Y4Ys+Y3Y4Y6 }
(b)

Yl y3y&y6+yly3 ySy6+yly4y5 y6+y2 y3 y&y6 +y2 y3 y5 y6+y2 yhy5 y6 +y3 y4y_y6
_--" - |u i i i • | | | _" iy Y Y +Y y y +y y +y y y +Y y y +y y y +y y y +y y y +y y Y Y Y Y{134 135 1 _6 i_ 5 lh 6 234 235 2 36 24 5 2 h 6

+Y3YhY5+Y3Y4Y6 } (c)

Comparing (33) with (37), and (35) with (38), we see that the

topological results are identical to those obtained by direct determinant

expansion.

CONCLUSIONS
el | i

The main purpose of this paper has been to introduce to the reader

the topological approach to the analysis of passive networks. We hope

that the above discussions have accomplished this.
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Oneof the obvious advantages of topological formulas over the con-
ventional methods for the evaluation of determinants and cofactors in
obtainin_ the driving-point immittance (i.e., impedanceor admittance)
functions is that the former avoids the usual cancellations inherent in
the expansion of determinants and cofactors in the latter. Furthermore,
topological analysis maybe considered as a shortcut in evaluating network
determinants and cofactors because there is no need to obtain the determi-
nants and cofactors whentopological formulas are used. The terms maybe
obtained directly from the network by inspection. This point has been
adequately illustrated by the examples in the preceding section. Thus,
topological methods also provide better physical insight to the problem
since each term in the expression corresponds to a part of the system.
(In the case of a passive one-port, each term in Yd(S) or Zd(S) either
corresponds to a tree or to a 2-tree.)

Still another advantage of a topological analysis is that the analysis

can easily be done by an automatic digital computer. [Ref. 5-10]

There are other advantages as well as disadvantages of the topological

methods over the conventional analysis technique that have not been dis-

cussed here.l, ll It is hoped, however, that our brief discussion on network

topology in this work will give some inspiration to the interested reader

so that he will pursue the subject further and that fruitful results will
be derived from it.

REFERENCES
i • , , ,

1. S.P. Chan, Introductory Topological Anal[sis of Electrical Networks
i i Ii

to be published by Holt, Rinehart and Winston in 1967.

2. S. Seshu and M.B. Reed, Linear Graphs and Electrical Networks,
Addison & Wesley, 1961.

3. W. Mayeda and S. Seshu, "Topological Formulas for Network Functions_

University of Illinois Bulletin, vol. 55, No. 23, Nov. 1957.

h. R.H. Percival, "Solution of Passive Electrical Networks by Means of

Mathematical TreesM J. Inst. Electrical Engineers (London), vol. 100

_art III) pp. 143-150, May 1953.

5. W. Mayeda, "Digital Determination of Topological Quantities and Network

Functions," Int. Tech. Report No. 6, Contract No. DA-11-022-0RD-1983,

Elec. Engr. Research Lab., Univ. of Illinois, January 15, 1957.

6. F.J. MacWilliams, "Topological Network Analysis as a Computer Program,"

IRE Trans. on Circuit Theory, vol. CT-5, pp. 228-229; September 1958.

7. W. Mayeda and M.E. Valkenburg, "Network Analysis and Synthesis by

Digital Computers_ 1957 WESCON Convention Record, pt. 2, pp. 137-ih4.

8. W. Mayeda and M.E. Van Valkenburg, "Analysis of Nonreciprocal Networks

by Digital• Computer," 1958 IRE National Convention Record, pt. 2, pp. 70-75.

9. W. Mayeda, "Reducing Computer Time in the Analysis of Networks by Digital

Computer", IRE Trans. on Circuit Theory, vol. CT-6, No. l, March 1959.

H. Watanabe, "A Computational Method for Network Topology," IRE Trans.

on Circuit Theory, vol. CT-7, No. 3, pp. 296-302, Sept. 1960.

S.P. Chan,"A Brief Introduction to Topological Techniques in Network

Analysis_ Electronics, Nov. lh, 1966.

lO.

ll.

49



TOPOLOGICAL ANALYSIS OF ACTIVE NETWORKS

R.M. CARPENTER

NASA Electronics Research Center

Cambridge, Massachusetts

ABSTRACT

A compatible series of computer programs is developed for

circuits with large numbers of components, typically 30-100. The

programs utilize the dichotomy entailed in the flowgraph associated

with any active network. Algorithms are established (i) to dicho-
tomize the network into voltage and current generators, (ii) to

examine separately each set and the associated system of controls

interrelating both sets, (iii) to establish a flowgraph in terms

of a unique dichotomous representation for a given equivalent

circuit. While the algorithms were developed for linear networks,

the dichotomous procedures provide an approach which is not so
restricted.

i. PROBLEM FORMULATION

i.i Need for Dichotomous Techniques
The evaluation of network functions by nmtrix operations such

as mesh or nodal analysis has inherent limitations associsted with

inversion or partial inversion of matrices. Typical limitations

are

(a) Necessity for substantial memory

(b) Inaccuracies due to round-off error

(c) Large running time
The complexity of a matrix-based evaluation routine increases

with the number of trees inherent in the network topology, which in

turn appears to increase factoriallywith the number of network

elements. As a consequence networks with 20 to _O components are

now considered beyond the capabilities of small computers such as
the IBM 1620. To meet this need several alternative avenues are

being explored:
(a) Increases in computer memory from 107 bits to _0lO bit_,
(b) Decreases in computer operation times from lO-_ to lO-_O

seconds.

(c) Utilization of relaxation techniques for matrix operations.

(d) Utilization of dichotomous procedures in place of matrix

procedures.
Dichotomy is derived from Greek dicha (in two) and temnein

(to cut) and refers to separating the system by appropriate cuts

into two or more subsystems, followed by an analysis of each sub-

system and of the relationships between them. Networks appear to

be ideally suited for dichotomy into separate subsystems, which

5O
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appear more amenable to computer-oriented methods of analysis:

(a) A subsystem relating through variables, Kirchhoff's

current law.

(b) A subsystem relating across variables, Kirchhoff's

voltage law.

(c) Interrelations between the above subsystems, Ohm's law.

The dichotomous representation of lumped parameter systems

is based on functional dependence between two variables associated

with each parameter, and forms the foundations of flowgraph and

similar network descriptions (Ref. I-L). This dichotomy is not

related to dicoptics employed by Kron and Happ (Ref. 5).

In Kron's approach dicoptics or tearing of systems into sub-

systems is essentially a search for judiciously selected subsystems

to minimize interconnections and maximize intraconnections. The

purpose of dicopties is to reduce significantly the number of

variables to be evaluated, while in the dichotomy entailed in flow-

graphs the number of variables is doubled.

The dichotomy here proposed therefore increases the size of

the associated matrix by analyzing two properties of each parameter,

and aims at a reduction in the complexity of algorithms, not at a

reduction in the size of the matrix associated with the system.

Therefore, it is essential to distinguish between the concept of

subsystem based on dichotomy defined above as separately analyzing

two or more properties of each parameter of the system and the con-

cept of subsystem resulting from dicoptics or tearing the system

into parts analyzed by properties identical to those used before

tearing.

1.2 Equivalent Circuit Description

A network with active and passive elements which may be non-

linear can be represented graphically by an equivalent circuit as

shown in Fig. i. The equivalent circuit describes:

• A set of vertices; each vertex is defined as an electrically

distinct point.

• A set of elements; each element is defined by the direction

from A, the origin vertex to B, the target vertex.

• The network topology, which is defined by associating with

each element a set of vertices A and B. Similarly other

network properties are defined by associating with each

elen_nt other properties described by the symbols C,D,E,F,G,H.

• With each element E is associated a control function C, a

control element D, and a generator function G. In controlled

sources D _ E and in passive elements D = E.

• For independent sources D is absent; this case does not occur

in computer-oriented calculations and is of academic interest

only.

• The dichotomy of a network is accomplished by requiring that

the properties D and E be split into two mutual categories,

denoted by the binary symbols I and O. The dichotomy in

control function D is described by property C, and the
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dichotomy in generator element E is described by property
G.

The equivalent circuit, Fig. 2, contains the information

needed to code the circuit in Fig. 1.

1.3 Review of Dichotomous Techniques

The dichotomy is based on constraints imposed by laws of

physics and implemented by assigning each function a binary code
O or I.

• Across variables or voltages are coded by "0".

• Through variables or currents are coded by "l".

• No two voltage generators may be in parallel.

• No two current generators may be in series.

• The topology of voltage generators forms a tree or Z
structure.

• The topology of current generators forms a link or Y
structure.

Guidelines, algorithms and resulting programs for selection

of an equivalent circuit from the schematic circuit diagram are

excluded from the scope of this investigation. It is here assumed
that sufficient information to construct the equivalent circuit

in Fig. 2 is given. The objective of this investigation is to

construct a dichotomous presentation of the network. A flowgraph
is defined here as a network description in which an element is

identified by:
(a) Two variables, current and voltage.

(b) A functional relation specifying the direction of

functional dependence between the variables.

(c) A symbol or numerical relationship denoting this

functional relationship.

The flowgraph is, therefore, a dichotomous network description,

its specific form - matrix, directed graph or code - is, of course,
immaterial and irrelevant.

Since the u_age of the terms "block-diagram" and "flowgraph"

as synonyms has led to much confusion, it appears appropriate to

define block-diagram by the following properties:

(a) An oriented weighted graph with two distinct types of

nodes: Contributive or summing point, Distributive

or sampling point.
(b) A functional relation between nodes specifying the

direction of functional dependence between the
variables.

(c) A description of the functional relationship between
variables.

The flow_raph has, therefore, distinct features which dis-

tinguish it from the block-diagram in several aspects:
(a) A flowgraph is a unique description of a network while

a block-diagramdescription entails arbitrary
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and subjective decisions.
(b) The functional dependencedescribing any network element

expresses always a distributive node as a function of a
contributive node, never otherwise.

(c) The functional relations governing interconnections
between elements are dependent only on the network topo-
logy and are restricted to the three values -I, O, +i.
The functional dependenceexpresses always a contributive
node in terms of distributive nodes, never otherwise.

From a draftsman's vantage point a flowgraph as defined here
may, of course, be drawn as a block-diagramwithout violating the
above definitions of either flowgraph or block-diagram.

l.A The Closed System Formulation

The H tag of the computer input relates the quantities to be

determined by the equivalent circuit and thus defines the problem

uniquely, which, in turn, is essential for the construction of a

unique dichotomous solution.

For a desired circuit response, such as a transfer function,

current gain or output impedance, all entries except one will be

coded "0" for a real network element, with an unknown "virtual"

element coded a "l". To convert the open network to a closed

network by inserting a fictitious element the system is viewed as

a "black box" with input and output terminals and an unknown

element connecting the two terminals. The element to be determined

is usually coded E = i. The artifice of setting E(1) = O + jl is

often used for computation of the unknown response.
For a closed system a constraint always exists which relates

the network parameters: H = O. If the unknown is E(1) = j, then

H can be expanded as

H(j) = H(j) + jH(j')

where H(_) = Re(H) and H(j') = Im(H)

In practice H is computed as a complex number, j is redefined as an
unknown and H(j) = O is solved for the unknown j = -H_)/H_j').

1.5 Illustrative Example of Network Code

The voltage regulator, Fig. i, is coded in Table i. The con-

trolled source, E = 3, specifies the direction of positive current

flow from node 3 to node 1. A frequency independent current source
is controlled by the current through element E =6, and thus is

encoded by C = l, D = 6, F = O, G = 1. The transmittance E = 8

with value E(8) = jl is the unknown.

The problem solution is presented in coded form in Table 2.

Thus algorithms are to be developed to produce computer print-out
from the coded network. The computer readout, Table 2, is equiva-

lent to the flowgraph in Fig. A.
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2. ALGORITHMSFORFL0k_RAPHCONSTRUCTION

2.1 Flowgraph Construction
The dichotomous presentation consists of three basic flow-

graph regions: V,W, for voltage and current, these are strictly

algebraic relations; the third region T_ contains differential

equations or subroutines, which are referred to as transmittances.
To derive these relationships from the problem statement by the

algorithms proceed as follows:
(1) The V matrix contains voltage relationships; the tree

branches or G = 1 elements are determined in terms of the link

branches or G = O elements.

(2) The W matrix contains current relationships of the
link branches or G = 0 elements considering the tree branches

or G = 1 elements as knowns.

(3) The T matrix contains the transmittances relating _W and

V matrices; the known and unknown variables are determined in code

G in the problem statement.
(A) The assignment of known and unknown variables is opposite

in the V and W subsystems from that in the T subsystem.

The _V,W, and T matrices then form a closed flowgraph.

2.2 Coding Convention for Flowgraph

The _ and__Wmatrices denote inte_____rconnectionsbetween elements
or Kirchhoff constraints and the T matrix describes the intra-

connection or transmittance within each element. The flowgraph

is interpreted in terms of signal flow as follows:

(a) The _,_, and W matrices de_ote signal flow from column

to row entry.

(b) Signal flow in interconnections occurs from distributive
to contributive nodes.

(c) Signal flow in intraconnections occurs from contributive
to distributive nodes.

(d) Entries are finite; infinity is not permissible.

(e) Entries "+" or "-" imply +l or -1; blanks imply zero.

Table 2 and Fig. A illustrate equivalent descriptions of a

flowgraph.

2.3 Properties of V Matrix
The number of columns with entries equals the number of G = i

elements in the equivalent circuit. Each G = 1 element is associ-
ated with one or more G = 0 elements to form a tie set, or closed

sequence of adjoining elements. The algorithm must, therefore,
examine the vertex origins and terminations of successive elements

specified in inputs A and B, to determine which G a 1 elements must

be selected to form a tie set with given G = 0 elements. From the

network topology and the directions specified by A and B in the

problem statement, the entries of _ shown in Table 2 result.
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2.A Construction of V Matrix

Necessary data for construction are

(a) Entries A,B and G in the problem statement, Table I.
(b) The definition of a tie associated with each G = 0

element.

(c) A definition for the sign associated with each G = i

element in a given tie.

Establish a set of known voltages V consisting of elements
E(i) for which G = 0 as:

v =(ila(i)= o)
and a conjugate set

v = l)
The set _ contains only elements which are current generators.

while the set V contains only voltage generators. The algorithm

expresses the unknown voltages in terms of the known voltages.
V = f(V)

There wil_ be an entry +i or -i in the V(j,k) position of the

V matrix if j_V and k_V. The entry will be ±i if E(j) occurs in
a tie containing E(k). The entrywill be -i if E(j) and E(k) are

in equal directions in the tie and +I if in the opposite direction.

Select a tie of N elements with one element in V(j) and (N-I)
elements in V(k) for each element inV,(j). To illustrate in

Fig. i for the tie E(A)_ E(5),_E(6), clearly:
V(j) = V(5)

= (0OOlOi0O 
V(5)= V(4)+ V(6)

This may be written as a code:

v(5)= (ooo+o+oo)
This result can usually be read off immediately from the equivalent
circuit and is then entered as column 5 o£ the V matrix, or can be

expressed above as an algorithm in terms of inputs A,B and G.

2.5 Properties of W Matrix

The number of columns with entries equals the number of G = 0
elements in the equivalent circuit. Necessary data for construction
are

(a)
(b)

Entries A,B and G in the problem statement, Table i.

The definition of a cut-set as a single unknown G = 0

element which can be expressed in terms of one or more

G = i elements on the basis of flow conservation through
an imaginary closed surface.

(c) As assignment of sign based on the direction of flow.

Analagous to the V ma_trix two complementary sets exist:
Unknown currents: W = (iIG(i) = 0 )

Known currents: W = (iIG(i) = i )
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The set Wwill contain only current generators while the set
W-contains only voltage generators. A set of binary coded vectors
is required to express the unknowncurrents in terms of only the
knowns.

w = f(w)
To illustrate, consider column W6 of Table 2 which yields W(k) =

(O1101011) and W(j)= (lO01OlOO) and the entries _Wmatrix W(j,k) =

(W(k), W(J)) as listed.

2.6 Sign Determinator in W(j,k)

L_t A(W-_be the set of vertex origins of the G = O elements,

and B(W) be the set of vertex terminations of the_se elements. In
coded form from Table i A(W) = (20030300) and B(W) = (lO0_OlO0)

where a O indicates a G = 0 element. To reduce the length of the

code rewrite A(_) = N(OllO)and B(W) = N(lO01) where N(OllO) is

understood to be a set containing only vertices 2 and 3 of the

four vertices in the equivalent circuit.
To determine the sign in W(6) separate the vertices of the

equivalent circuit, Fig. 3A, into two complexes_ Define complexes

A(C) and B(C) as sets _f vertices connected by W elements, such

that E(6) is the only W element connecting the two complexes.

From the problem statement Table 1 A(6) = N(OOlO) and B(6) =

N(lO00). Algorithms are formulated to identify all G = O elements
which are connected to A(6). These are A(C) = N(OOll). Similarly

B(C) = N(llO0).
To find all G = 1 elements connecting A(C) and B(C), connect

vertices 3 or _ in A(C) to vertices 1 or 2 in B(C). The elements

E(2), E(3), E(5), E(7) and E(8) meet this requirement and are

listed in Table % with data on A and B from Table 1. It is then

determined if A(i) is the A(C) for each E(i) and B(i) is in B(C)
as shown in Table %. The result in code for E(6) is W(6) =

(O+-O-O--) as entered in the W(6) position in the W matrix of
Table 2, which can be interpreted as I(6) = I(2) --1(3) - I(5) -

-
The signs are then interpreted as the positive direction of

current into A(C), the reference direction for the unknown current
I(6) being specified from A(C) to B(C) or vertex A(6) = 3 to vertex

B(6)= 1.
Similarly for W(A) from Table i:

A(A) = N(OOIO) and B(4) = N(OOOI)
Thus

A(C) = N(lllO) and B(C) = N(OOO1)

To find all G = 1 elements connecting vertices l, 2 or 3 in

A(C) to vertex _ in B(C), note that E(5) and E(7) meet this require-

ment; hence W(4) = (0OO0+O+O).

2.7 Description of T Matrix
The T matrixdescribes the tranamittances between the dichoto-

u
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mous variables, current and voltage, as shown in Table 2.

If D _ E, then E is an independent source. If D = E, then E

is a passive element. Four special cases occur:

(a) C = 11G = 0 - the transmittance is an impedance Z or a

current controlled voltage generator.

(b) C = O_ G = i - the transmittance is an admittance Y or a

voltage controlled current generator.

(c) C = O_ G = 0 - the transmittance is a dimensionless

quantity relating the control and generator, or a voltage
controlled voltage generator.

(d) C = Ij G = i - the transmittance is a dimensionless

quantity relating the control and generator, or a current

controlled current generator.

The case D = O denotes that E is an independent source and is
not considered here.

3. APPLICATIONS

3.1 Closure of Open Graphs

An open system, Fig. 8, contains strictly dependent and strictly
independent variables.

The flowgraph relates the variables X and Y by Y = GX, where G

is the equivalent transmittance of the system. Closing the system

by a "dummy" transmittance T, the "independent" variable is made

G = I/T, a function of the dependent variable X = TY. Assuming

that any closed system is governed by a constraint H = O, which is

dependent on the network topology and is referred to as the topology

equation, H can be expanded in terms of any parameter

H(T) = H(_) + TH(T')

where H(T) is the part of H devoid of T and H(T') is the part of H

which contains T with T factored out. We then solve this equation
to obtain

T = -H(_)/H(T') = I/G

The variables X and Y are judiciously chosen; for example, to obtain

current gain l(out)/l(in),choose X = l(out) and Y = l(in), so that

l(in) = G l(out); thus I/G represents the current gain.

Since present techniques of flowgraph evaluation are based on

closed systems, it is necessary to specify the problem in terms of

of an unknown tagged parameter, the H input included in the flow-

graph. No special algorithms are needed for processing it, provided

the unknown is always treated as a transmittance associated with an

element, not as a transmittance associated with a constraint due to

interconnections.

3.2 Further Example of Computer Run

A second example is presented to illustrate

(a) The problem statement, including tagging of the unknown

parameter.
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(b) Construction of the flowgraph, including the closing

parameter.
(c) Numerical values in proper form for future processing.

Fig. 5 shows the equivalent circuit of a transistorized band-
pass amplifier (Ref. 6) coded for 1/G--V(out)/I(in), with Fig. 6

the coded equivalent circuit. Table 5 gives the problem statement

and Table 6 the computer print-out from which the flowgraph in

Fig. 7 is constructed.

Copies of this computer program have been qualified and are

available at a nominal charge through project COSMIC, University

of Georgia (Ref. 7).

3.3 Unique Features of Dichotomous Approach

The dichotomous approach here presented entails several

original and unique features of primary interest to the systems

analyst :

• A systematic procedure of problem formulation in terms

of a closed system. This implies that the unknown to
be evaluated forms an integral part in setting u_ the

problem.

• An approach to circuit evaluation and design based on

algorithms. This implies that the engineer formulate

his problem to be understandable to a computer programmer
who is not expected to acquire an understanding of the

engineering aspects of the problem.
• A splitting-up of a larger system of equations into several

"simpler" systems which can be analyzed with greater facility.

The functional relationships describing the overall system

are separated into two sets of algebraic relationships

(Kirchhoff's voltage and current laws), and a set of first

order differential equations relating them, if the system

is replaced by an appropriate subroutine.

3._ Extensions of the Method

The program described has been extended to include the evalu-

ation of the flowgraph. The algorithms upon which this program is
based will be the subject of a forthcoming report, (NASA/ERC/CQ

66-676). In addition, subroutines have been formulated to include

sensitivity and reliability analyses, frequency response and tran-

sient response, as well as reduction techniques to obtain simplified

flowgraph models.
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Table i. Problem Statement for Voltage Regulator (Fig. i)

ABCDEFGH

21001000

23022010

31163010

3_oo_ooo
A1055010

31166000

AIO77OLO

31188011

Numerical

•500 E+2

•AO0 E-I

•lOO E+3
•250 E+2
.lO0 E-I

•lOO E+6
.200 E-1

•lO0 E+l

Table 2. Problem Solution - Flowgraoh Construction

VI23_5678WI23A567 8TI23&5678

1

2

3

5
6

7
8

+ 1 IE

2- 2

3 3
+ + & _ E

5 I+ - 5 I Y
+ ++6 6

7 + 7
8 8

+ Y

E

m

Z

Y

Z

Table 3. Criteria for Dichotomous Assignment of C and G

G or C Variable Example G_ No Elements

0 Across Voltage 0 In parallel

1 Through Current 1 In series

C

G

Function Node

Control Contributive

Generator Distributive

Y Admittance C = O, G = 1

Z Impedance C = l, G = 0

W Amplification C = l, G = 1

V Amplification C = O, G = 0

Table A. Choice of Entries for W Matrix

E(i) A(i) B(i) Is A in A(C)? Is B in B(C)?

2 2 3 No No +

3 3 i Yes Yes -

5 & i Yes Yes -

7 A i Yes Yes -
8 3 I Yes Yes -
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Table _. Problem Statement for Band-Pass Amplifier (Fig. 5)

A B C D E F G H Numerical

2 I i I i 0 0 0 .500 E+2

2 i 0 2 2 i i 0 .400 E-5

2 I 0 3 3 2 I 0 .250 E-4

2 3 0 4 4 0 i 0 .500 E+2

3 i i 5 5 0 0 0 .500 F+8
3 i 0 6 6 i i 0 .200 E-8

3 4 0 7 V i i 0 .500 E-II

A i 0 5 8 0 i 0 .500 E+2

4 i 0 9 9 0 i 0 .400 E+a

4 i 0 i0 i0 i i 0 .i00 E-8

A i i ii ii 2 0 0 .i00 E-2

i 2 O ii 12 0 i i .i00 E+I

Table 6. Computer Output for Flowgraph Construction

V 123 A 567 89 lO l112
1

2 2-

3 3-

4 4-

5 - +_- 5
6 6

7 7
8 8

9 ?
i0 i0

ii - - + + ii

12 12 +

W i 2 3 A 5 6 7 8 9 iO ii 12
+++ + i

+

- +

m

T 1234 5 6 7 8 9 iO 1112
IZ

2

3
4

5
6

7
8

9
i0

ii

12

Y

Y

Y

Z

Y

Y

Y
Y

Z Y
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ABSTRACT

Basic algorithms for matrix manipulations by computer are presented.

Matrix formulation and solution of the network equations for a linear

lumped parameter network are given. An example for these is shown.

Advantages and disadvantages of this procedure are briefly discussed.

References are made to pertinent literature.

INTRODUCTION

The greatest advantage of matrices in the theory of networks is in

the systematic manner in which analysis may be carried out.

The intent of this paper is to introduce some computational algorithms

for basic matrix operations, hoping that a short introduction to them will

encourage engineers not already employing computers to avail themselves

of this tool. Networks formulated as matrix equations will be shown to

be readily analyzed by computer techniques; such as analysis is basic to

any design.

The viewpoint adopted here is that the effect of changes made by the

designer in the circuit may be observed in the results obtained by matrix

analysis. Fundamentally, matrix methods are analysis tools; their useful-

ness to a designer of circuits lies in yielding readily to computation by

standard computer programs found in every computing center.

The example given here is but an insignificantly small sample of

applications of matrices to circuits. The vast bulk of literature readily

and customarily accessed by circuit designers contains articles dealing

with matrix applications to circuits.

One of the drawbacks of matrix methods will be found to be the accum-

ulation of round-off errors. The minimization of such errors is of para-

mount importance in all matrix calculations. It is not the intent of this

discussion to delve into numerically accurate procedures, but the user of

any computer center should ascertain the accuracy of the programs he

customarily uses. In general it will be found that iterative methods of

solution are inherently more accurate.

*This paper is based on material contained in the forthcoming book

"Computer-Aided Circuit Design" by W. W. Happ and J. Staudhammer (McGraw-

Hill, 1967).
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Recently a very good book [14] became available describing various

large programs for use with large-scale computers. Unfortunately most of

the programs described there can not be utilized without extensive repro-

gramming; also large computer installations have a relatively large cadre

of sophisticated users well able to utilize their particular programs for

their particular problems. This paper is intended for those who yet have

to employ computers in circuit analysis to any great extent.

MATRIX ALGEBRA

Matrices are well known to electrical engineers and a working knowl-

edge of them is assumed here. Interested readers will find ample references

ranging from the practical [i] to the complete [2] exposition of the theory

of matrices. However, algorithms for machine computation are summarized

here as an aid for mechanization of some calculations.

A matrix is an array of elements, numbers of expressions, arranged

in a rectangular pattern. The whole array is referred to by a single

designator, say T; any element in the array is designated by a pair of

subscripts. It is also customary to use an upper case letter for the array

and the corresponding lower case letter for the element. Thus t12 would
refer to the second element of the first row of the array T. When the

whole array is referred to by a single letter, we speak of the whole

matrix notation; when the matrix is described as a collection of elements,
the term kernel index notation is used:

Note that a matrix is a collection of numbers and a rule of ordering
them in a prescribed pattern of rows and columns. Each row has the same

number of elements and all columns must contain equal number of elements

too. When the row dimension is one, the matrix is a row vector; a matrix

consisting of a single column is called a column vector, or more simply a
vector.

Matrix Addition

Two matrices A and B, having elements a.. and b.., may be added together

to give as the result the matrix C by t_ use o_Jthe formula

o = a + b. (l)
zj zj zj

provided the subscript ranges on A, B, and C are the same. Thus the

matrices must have the same sizes: i.e., must possess the same number

of rows and the same number of columns.

Equation i gives the algorithm for matrix addition; the equivalent
F_RTRAN statements would be

5O

D_ 50 I = i, N

De 5o J = l, M
C(I,J) : A(Z,J) + B(I,J)

(2)
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where the matrices A, B, and C were assumed to have been defined in a

DIMENSION statement to possess at least N rows and M columns.

Matrix subtractions

D=A-B (3)

merely introduces a minus in place of the plus in expression (2).

Matrix Multiplication

Two matrices P and Q may be multiplied together to yield the matrix R by

the following formula

N

rij = _ Pik qkJ (i = i, ..... L) (4)
k=l (J = i, ..... M)

From the subscript ranges it may be inferred that P has L rows and N columns;

Q has N rows and M columns; and R has L rows and M columns. In whole

matrix notation the above becomes

R = P . Q (5)

In order to obtain a product it is necessary that the row dimension

of P equal the column dimension of Q; such matrices are said to be con-

formable in the order PQ. The product QP will not exist unless L = M.

Since in general L # N the products PQ and QP are not even of the same

dimensions; thus in general

pQ # Qp (6)

This result is true even if L = M = N.

The FCRTRAN statements corresponding to the algorithm given in

expression 4 are

i00

D_ i00 I = i, L

D_ i00 J = i, M

R(I,J) = O.

De i00 K = i, N

R(I,J) = R(I,J) + P(I,K) * Q(K,J)

(7)

Simultaneous Equations

A set of linear algebraic equations

all xI + a12 x2 + . + alN xN = bI

a21 xI + a22 x 2 + . . + a2N xN = b 2
(8)

aNl Xl + .... + aNN xN = b N
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maybe rewritten as the matrix

AX=B (9)

with

A

X

[ 1all al2 • . alN

xI

x2

xN

and B =

b I

b2

b N

The solution of such a set of equations is formally given by Cramer's Rule

which computationally is nearly impossible to evaluate for large sets of

equations since it requires (N-1)N! multiplications. On a large scale

digital computer which performs each multiplication in l0 Us this amounts

to 14 1/2 hours for a 12 x 12 matrix•

There exist a _umber of practical numerical methods for the solution

of linear equations . The simplest of these (although not "best") is the
Gauss-Jordan procedure which requires about 1/2 N multiplications and

divisions for the solution". The process consists of dividing the k-th

equation by the coefficient a_k and subtracting this newly formed equation
from all other equations• Th_%-e steps are done for k = l, ... N. The

method is usually applied to the augmented matrix G consisting of N rows

and (N+l) columns by appending to A the vector B:

"G = IA (i0)

In the augmented matrix the Gauss-Jordan algorithm is

!

g kj = gkj / gkk J = k+l, .... N+l

g'iJ = giJ - gik gkj i = i # k ..... N

The corresponding F_RTRAN statements are

(ll)

l0

NI = N+I

De 90 K = I,N

KI = K+I

D_ i0 J = KI, N1

G(K,J) = G(K,J) / G(K,K)

D_ 30 I = I,N

IF (I - K) 20, 30, 20

65



20 D_ 25 J = KI, NI

G (I,J) = G(I,J) - G(I,K) * G(K,J)
30 C@NTINUE

Note that the solution vector X will appear in the (N+l)th column of the

array G.
The above method will work as long as A(K,K) is not zero. Practical

numerical roundoff error dictates the need of pivoting (i.e., having gkk

be the largest element in the subarray formed of the k to N rows and

columns). Useful library programs should include such procedures; a

further development is found in [4].

Matrix Inversion

The inverse B of a matrix A is defined by the relations

B.A = A.B = I (12)

where I is a unit matrix (i.e., has zeros everywhere except that the

main diagonal is all ones. )

Since the inverse may be post multiplying or premultiplying the

original matrix and result in the same unit matrix, the matrix A must

be square; i.e., it must have as many rows as eelumns. Non-square

matrices possess no inverses.

The simplest (but not best) way of calculating the inverse matrix

uses the Gauss-Jordan procedure mentioned above. The augmenting matrix

in this case is a unit matrix I:

G now has N rows and 2N columns; the formulas of expression 11 apply

with J = K + 1, ... 2N.
The F_RTBkN statements for the creation of the matrix G and the

Gauss-Jordan inversion are given below"

l0

NI = N+I

N2 = 2 * N

D_ 8 I = i, N

I_ 5 J = I, N

G(I,J) = A(I,J)

De 6 J = NI, N2

G(I,J) = o.
G(I, N+I) = i.

D_ 90 K = i, N

KI=K+I

D_ i0 J = KI, N2

G(K,J) = G(K,J) / G(K,K)

D_ 30 I = I,N

IF (I-K) 20, 30, 20

(14)
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2O

25

3O

9O

D_ 25 J = KI, N2

a(ij) = o(i,J) - a(I,K) * a(K,J)
CCNTINUE

C_NTINUE

The inverse of A will appear in columns N+I to 2N of the array G.

Again control of numerical round-off dictates the use of pivoting;

and economy in machine utilization requires that the matrix A be in-

verted in place. The above program may be modified to meet these

requirements; such a version is discussed in [4].

Dia6onalization

A given matrix Q may be decomposed into the product

Q = V P V-I

where

p

m
l

PI 0

P2

0 "PN
m

(15)

and

V v2 iv ]
provided the P. are distinct.

1

The values P , .... P. are the eigenvalues, and the vectors Vl,.1 _ ""
v N are the eigenvectors of A.

Due to the special nature of P the matrix Q is the sum

N

Q = _ Pk Vk Wk (16)

k=l

where _k is the k-th row of V-I. (Expression 16 may be verified by direct
multipllcation of equation 15.)

The calculation of eigenvectors and eigenvalues is a major task for

arbitrarily given Q; for a readable treatment of several useful methods

the reader is referred to [3]. Here a method will be given which is use-

ful in medium-sized problems; a theoretical Justification is given in [5].
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Starting with an arbitrary non-zero vector x the following
o

sequence of vectors is calculated:

A x ° = xI

A xI = A2 x° = x2

A x 2 = A3 x° = x 3

(17)

A X(s_l) = X(s)

then for a sufficiently high s

x( _ s
s) = P1 Vl

where P1 is the largest eigenvalue in A.

The value of s is ascertained from the elements of the vector X(s):

X(s)'i = P1 i = i, .... N (18)

X(s-l),i

i.e., when the ratios _ two successive iterations of x approach a

constant, this constant is P.. In practice one element of the vector
I

x, 1_ is made 1 by factoring out its value and discarding it. The

r_c_d vector is then v 1. When vI does not change upon iteration, the
process converged.

The iterative process described in 17 will converge if the P's are

distinct and real. For complex P's a modification of the above, also

described in [5], may be used.

The row inverse eigenvector w I is obtained by starting with an
arbitrary non-zero row and premultlplying A analogously to equation 17.

The resultant sequence of rows will converge to w I for distinct real
eigenvalues.

Having found the largest eigenvalue and the corresponding v and w,

the product P. vI w I is formed and subtracted from the original Q; the
result is Q.:I

Q : Q - Pl Vl Wl (19)

The matrix Q does not contain the eigenvalue P1 anymore, hence Q
may be iterated for the next highest eigenvalue.
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The above process is repeated until all eigenvalues and vectors
are found.

In the case of complex P. it is possible to start with an arbitrary
nonzero complex vector (must 1 .contaln at least one real and one imaginary

part) and obtain convergence by the criteria described above; all com-

parisons will have to be made on complex quantities, which is not too

difficult using FCRTRAN IV.

Matrix Differential E_uations

Linear network equations can be written in the form of a set of first

order differential equations:

dx

A x = d-_ x lt=o= Xo (20)

where A is a square matrix and x is a vector of voltages and/or currents.

The solution of this state-variable equation is simply [7]

At
where e

At
X = e x

o

+ --zl!A2t 2 + .I + At

(21)

By the use of equation 15 a reasonably simple solution is obtained:

x = IV P° V-i + V p V-I t + l, V p2 V-I t2 ]• • • • • X

0

= V [p° + p . t ÷ ½! p2 t2 + . . IV -I

However due to the fact that P is a diagonal matrix
m

tTMP1 TM 0

p mtm

pm.tm = 2 ..

0
D

and the bracket in equation 22 becomes

•PNmt TM

w

x (22)
0

(23)

m

PI t
e

P2 t
e

0

•pN t
0 e

(24)
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Thus by the use of equation 24 the solution vector for the circuit voltages/

currents becomes

x(t) = V[ IV -I x° (25)

Hence the time behavior of the circuit voltages and currents can be

calculated simply from a knowledge of the eigenvalues and eigenvectors

of the circuit matrix A.

For complex P's the exponentials go over into sine - cosine combin-
ations and the arrays V and V will contain complex coefficients.

COMPUTER PROGRAMS FOR MATRIX CALCULATIONS

Every large-scale computer installation has some capability for

matrix manipulation. The installation's capability may range from a

collection of matrix programs, such as the ones distributed by SHARE, to

sophisticated systems which enable the user to express his matrix

equations virtually in pure matrix notation. An example of such a system

is Lockheed's system FAMAS, but virtually all large computer centers have

their own brand of matrix compilers. Usually the sophisticated systems

will compile a F_RTRAN IV program or else call on a library of FCRTRAN IV

programs.

Here we shall discuss a minimal set of computer programs intended

for unsophisticated users on a medium-scale computer, typically an IBM
1620.

Matrix addition and subtraction is usually conveniently handled with-

in the program by insertion of the two nested D_ loops given in equation 2.

Matrix multiplication is usually accomplished by the three nested D_ loops

given in equation 7. Occasionally it is desirable from clarity standpoint

to write these loops as separate subroutines. The subroutine arguments

for addition are (A, B, C, M, N). A separate subroutine is usually written

for subtraction, with the same argument list. No special provisions need

to be made if A = B = C. Matrix multiplication subroutines are more

common. The argument list would be (P, Q, R, L_ M, N). Precaution must

be exercised to have R # P or Q.

A routine for the solution of simultaneous equations is usually pro-

vided by the computer manufacturer as part of the software package supplied

with the computer. The routines supplied are usually some variants of the

Gauss Method, although sometimes the Gauss-Seidel iteration method is
utilized. In the former set of routines the determinant of the coefficient

matrix is calculated as a by-product. Vanishing determinants mean that no

unique solution exists; but unfortunately round-off errors in the calcula-

tions often result in small but non-zero determinants even though the

exact value of the determinant is zero. Thus it becomes necessary to be

able to identify true zero determinants.

The determinant of coefficient matrix will be zero or finite. The

magnitude of the smallest finite value of an N by N determinant can be no

less than the product of the N smallest elements in the coefficient

matrix. Thus any determinant value falling into that range of values

must be considered with due suspicion.
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The chance of build-up of round-off errors is minimized by the use
of iterative procedures, if they converge. In direct numerical procedures,
the use of pivoting is indicated. In addition all matrix programs should
be readily available in a form that does not require any changes in the
compiled programs; specifically the DIMENSIONstatement should not be
variable. In F_RTRANIV this is easily accomplished by including in the
calling sequence a parameter, say NA, which contains the numerical value
of the array dimension. This numberthen becomesthe variable DIMENSION
information in the subroutine.

In F_RTRANII recourse must be taken to relative indexing, where
every element is referred to by a single subscript, the location of that
element relative to the beginning of the array. Examples of such pro-
grams are discussed in (4).

Matrix inversion is another standard routine supplied by the com-

puter manufacturer. Usually an in-place inversion routine is available;

i.e., a routine that does not require additional space above the matrix
itself.

A package of subroutines for ei6envalue-eisenvector calculation of

matrices is available at most large computer installations. Centers

using smaller computers usually have access to such programs but often

only symmetric matrix routines can be found. The difficulty with unsymmetric

matrices is that in general their eigenvalues and vectors are complex.

Accuracy considerations pervade the whole of matrix manipulations by

computers. Detailed discussion of the computational advantages and dis-

advantages of various methods are found in [9]. Basic rules for the

minimization of the effects of round-off are the following:

1. Avoid in subsequent calculations the use of the result of the

subtraction of two nearly equal numbers.

2. Minimize the total number of arithmetic operations.

NETWORK STATE EQUATIONS

The usual procedure in analyzing an electrical network is to

establish the Kirchhoff current law (KCL), the Kirchhoff voltage law

(KVL), and the voltage-current relationships for the elements and thus

obtain the loop equations and/or mesh equation for a given network.

The equations are then transformed to give the transformed network

equations. Such analysis is thoroughly discussed in [lO], but a simpler

procedure is to utilize the state-variable approach. A thorough

discussion of a computer program using this approach is in [ll] where

general RLC active networks are analyzed. Here an example is shown

using only an RC active network.

Suppose that the differential equations (obtained by applying the

KCL conditions at each node) for a network are

dv

C d-K + GV + K = 0 (26)
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The computational solution of equation 31 can be carried out
by meansof equation 25 ("direct computation") or by a faster method
based upon direct expansion of the exponential as a power series [12].
The latter procedure is usually muchpreferred due to its controlled
errors and its speed advantage.

TRANSISTOR CIRCUIT EXAMPLE

In order to demonstrate the equations derived above, the circuit

given in Figure i was analyzed [6]. The equivalent circuit of the

transistor is shown in Figure 2. This circuit model allows the rough

calculation of DC and AC behavior provided the frequencies of interest

are not appreciably higher than f ,. The application here does fulfill

that requirement, a

The equivalent circuit of the amplifier is shown in Figure 3 with

the values indicated in Figures 1 and 2. The circuit differential

equations may be written down by inspection.

In this example there are 15 voltages (E. V.... V,L) to be

considered; the network equations make up 15 sl_ul@_neous ±inear

differential equations. Note that current balance expressions (KCL)

for nodes E. Vt Vo and Vl_ do not contain terms involving capacitors.
Thus the ra_'(m_im_ size o_ non-zero sub-determinant) of [C] is at

most ll. The rank could be less if some of the circuit elements were

of particular values. In this case they are not, and the eigenvalues

P1 P2 "'" P-'IIare found as described in equations 15 through 19. These
values represent the poles of the system matrix. The dominant roots

were found to be

PI = 556 and P2 = 5.33 x 105

corresponding to a low frequency half-power point of 90 cps and an upper

half-power frequency of 89 kc.

The upper half power frequency is suspiciously high since the design

called for a 20 kc value. Actual measured response of the amplifier

was about 40 kc, due to a miscalculation in the value of the 5600 w_f.The half

pwr. freq. is calculated from terms which are the sum of the 15 _f coupling

capacitor and the 5600 u_f capacitor. Thus the accuracy required in the

calculations involving this capacitor is about 1 part in 10-, a require-

ment not met by the routines used in the calculations.

The above demonstrates vividly the need of working with a separate

high frequency circuit where the interstage coupling capacitors are shorted.

Matrix methods will work here also, although some automatic circuit analysis

programs will obviate the need to derive different equations valid for

given frequency regions. For electronic amplifiers this is standard pro-

cedure discussed in any textbook. Note however that the motivation here

is a desire for higher accuracy in the calculations rather than the need

for easier calculations. A procedure for automating the derivation of

approximate circuit models is described in [13].
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with C = capacitance matrix; G = conductance matrix; K = DCsources
vector; V = voltage vector ("state vector").

It is desired to bring this set of equations into the "normal form"

dV
d-t- = AV + B (27)

Formally this may be accomplished by premultiplying eq.26 with C-1 and
putting every term not containing the derivative on the rig__t side of the
equation: this process can be carried out provided that C exists.
Generally, det C = 0 and hence C-" deemnot exist. In these cases the
set of equations in 26 is reduced to yield a diagonal form for C, say by
the Gauss-Jordan procedure outlined earlier. Whenevera whole column of
zeros is produced, the column is switched with the first following column
having a non-zero element on or below the main diagonal. In this manner
the original set (equation 26) is reduced to the following

I Irl[  r FT[o].... :'" " " "i" "" LV J L ojc21 c22 LV2j G21
(28)

with C21 = 0 and C2^ = 0. In general C12 # 0 and the above sets of linear
equations are solve_:

V2 = -G22 -1 (K 2 + G21 Vl) (29)

dV1 = _ -
d-_- -[Cll C12 G22 1 G21] -1 Gll - G12 G22 -1 G21 ] V1

_ ]-l _- [Cll - C12 G22 1 G21 [K1 - G12 G22 1 K2] (30)

This is now of the form of equation 27.

Provided that the inversions indicated can be carried out, equation

30 is solved, subject to the initial conditions, in the form

Vl(t) = eAt VI (0) - A-I B (Bl)

For the existence of this sglution the following must hold_

det Go_ # O; det (C_ - C_o Goo -_ GIo) # 0; det (G_I - G_ G_ -I G_)

0. =_f either of {_ese _@te_inan{_ vanish (becaUSe of_ar_cula_ _

circuit parameter values) degeneracy exists in the equations and some

of the variables in V_ may be expressed in terms of others in that set.
I

Computer programs exist for automatically performing the elimination of

such surplus variables one at a time until the minimum number of variables

is found Ill].
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SUMMARY AND EXTENSIONS

As was demonstrated above matrix manipulations are very easily

programmable in a higher order computer language such as FORTRAN.

However, efficient programs are much more complicated than the ones

indicated here; also, programming for minimum round-off error is a

very challenging and exacting task.

Once a library of matrix programs is established it is a simple

matter to analyze given sets of circuit equations. After a time the

computer user demands more accurate and faster routines which can

handle much wider classes of problems. What usually goes unnoticed is

that the user becomes accustomed to dealing with problems which he

could not do without computer aid. Thus the advantages of matrix

procedures include simplicity, modularity, and expandability. Against

these must be counted the relative cumbersomeness of inputting,

accuracy and timing difficulties (unless specific precautions are taken,

at the expense of simplicity) and large computer memory requirements.
This latter is so because for an N by N matrix a storage of N locations

must be reserved even though most of these locations will be filled with

zeros.

The input difficulties are partially eased by some special programs

for general circuit analysis, such as IBM's ECAP [16]. Developments in

this field are fast, and are directed mostly toward the writing of fast,

reliable programs for rather general non-linear circuit analysis programs.

The development of these general circuit analysis computer programs

for direct design use is the next major step to be completed. One can

incorporate these programs into a semi-automatic design loop consisting

of a feedback path which will adjust the circuit parameters and the

circuit topology such as to meet some prescribed performance criteria.

On the other hand it is possible to apply methods similar to

Mitrovics' method: the circuit equations, containing some literal

parameters, can be solved for in terms of those parameters using a symbol

manipulation language, such as IBM's F_RMAC [8]. In this procedure some

performance criteria for the network can be established directly in literal

form and values for these parameters can be obtained by suitable iteration.

With the wider availability of compilers of this kind this latter pro-

cedure should become useful in automated circuit design.
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I 347

INTRODUCTION

We are concerned here with the techniques available for the

realization of various driving point or transfer functions without the

use of inductors or transformers. We would like to be able to realize

all the possible types of functions available with the use of inductive

components, possibly even do more. Our purpose is to reduce the over-

all weight and size, and to eliminate all magnetic materials, as is

necessary in probes for deep space magnetic field measurements. Another

goal is cost reduction since_ for example, the elimination of inductors

allows circuit integration which can lead to lower cost and greater

reliability in quantity production.

We will define an RC active network as one containing only

resistors, capacitors, transistors_ and diodes.

A COMPARISON OF RC PASSIVE, RLC, AND RC ACTIVE NETWORES

In the passive RC network the available functions are extremely

limited as indicated in Figure i. The passive RLC network has a

greatly increased freedom both for driving point and transfer functions

(Fig. 2). If we now consider the RC network in which the R can be

either positive or negative, our freedom is increased (Fig. 3); however,

the poles are still severely restricted and this is not a significant

improvement. If we also have negative capacity available to us (Fig. 4),

all of the RLC pole, zero positions are possible as well as driving

point zeros anywhere in the right-half plane. The possibility of right-

half plane poles was not considered, as we are concerned here only with
stable functions.

THE NEGATIVE IMPEDANCE CONVERTER

One of the early methods of RC active synthesis used the negative

impedance converter (NIC) to produce -R or -C and thereby allow the

design of +_R, ±C networks. The NIC can best be described by the hybrid

g parameters (Fig. 5) in which the input impedance (Z) of an arbitrary

2-port is indicated as a function of the g parameters and the load

impedance (ZL). When gll = ge2 = 0 and gl2gel = l, the input Z = -ZL.

A typical synthesis procedure using the NIC, the Linvill method,

is shown in Figure 6. The poles of Zel are determined by the sub-

traction of two driving point functions and it is this subtraction

which allows complex poles. An example is given in Figure 7, in which
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any positive value of K in the second-order system maybe obtained
by changing R and C appropriately. (VNIC refers to a voltage negative-
impedanceconverter. )

THEOP_qATIONALAMPLIFIER

A high gain (G _ _) amplifier can be used as the active element
and, if an input RC network is combined with a feedback RCnetwork
(Fig. 8), we find that the transfer voltage ratio has a transfer admit-
tance in the denominator, thatais, the overall poles are determined by
the product of the poles of Y_21 and the zeros of yB2. Since the
zeros of a passive RCtransfer function are nearly unrestricted, we can
realize most of the transfer functions we wish to obtain. An example
is shownin Figure 9 in which a second-order bandpass function is
obtained. Other methods are available using operational amplifiers, in
particular the analog computer simulation method described in Refer-
ence 1. Although this method uses a large number of active elements
and resistors, only the minimumpossible number of capacitors is
required. If each realization is restricted to a low-order system, the
sensitivity to element changeand amplifier gain change is far superior
to that of most other methods (comparable to that of gyrator systems).
This method is therefore suited to the realization of poles of very
high Q.

THEGYRATOR

The use of the gyrator in RC active circuits is undergoing very
extensive investigation at the present time. The gyrator can be
described quite simply by the use of the y parameters (Fig. lO).
The input admittance is written as a function of the load admittance
(YL) on a 2-port network and the y parameters of the network. The
gyrator property of impedanceinversion occurs when Yll = Y22 = 0
and YI2Yel = -1. Wethen have the very useful property that a
capacitive load produces an inductive reactance at the input. This
property allows the direct replacement of all inductors in an LC filter
with gyrators and capacitors. The design effort is almost eliminated.
Oneway of looking at the action of the gyrator is shown in Figure ll.
The inductive input impedanceresults from the -R and -C which could be
produced with two negative impedanceconverters. A gyrator could be
built in this way; however, this is not the best approach from other
standpoints, but it illustrates the principle. Figure 12 shows a gyra-
tor used to synthesis a second-order bandpass filter. The 1 _ above
the gyrator symbol indicates the value of the gyration resistance (Y)
and thus a 1 fd capacitor would be gyrated to a 1 }iv inductor. A more
usual practical value would be a gyration resistance of lO4 G and in
this case a lO00 pF capacitor would be gyrated to O.1 H since L = 72C.

THECONTROLLEDSOURCE

This methoduses low-gain voltage amplifiers in most cases,
although a current amplifier could also be used. Only the voltage
amplifier will be considered as the low output impedance and high input
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impedancegreatly simplify the design and allow cascading without
additional isolation stages as would be required with the NIC and
gyrator examples previously given (Ref. 2). Of course, in the case
of direct replacement of the inductors in an RLCfilter, no isolation
stages are needed; but a newproblem arises, that of the frequent ocur-
rence of inductors not having one terminal grounded. This generally
will require two gyrators per inductor. Typical amplifier specifica-
tions for use as a controlled source are given in Figure 13. The gain
stability requirement of ±0.04% is predicated on a pole Q no greater
than i0 and a ±1%overall system stability. This type of sensitivity
problem exists in manyof the RC active synthesis methods, the overall
gain sensitivity to amplifier gain changebeing of the order of S = 2 Q.
The gyrator does not exhibit this characteristic nor does the analog
computer simulation method. Both are more complex procedures and would
normally be used only where a pole Q_ i0 is necessary.

Figure 14 illustrates the use of a controlled voltage source of
gain K to produce a low pass and a high pass second-order voltage
transfer function. The procedure is quite simple, a pole Q of 5
(coefficient of P is I/Q = 0.2) is obtained when K = 2.80. The ele-
ment values shownare not optimumin minimizing gain, but they illus-
trate the principle. An additional function is needed to allow synthesis
of most types of filters, and that is a meansof realizing jw axis
zeros. If we sumthe outputs of the high and low pass second-order net-
works (Fig. 14), we obtain the circuit shownin Figure 15 and the indi-
cated 2-zero, 2-pole function. This gives continuously variable j_
axis zeros at the expense of considerable complexity. This network can
be simplified as shownin Figure 16. The only restriction here is that
the zeros be located at a greater distance from the origin than the
associated poles. Onearbitrary constant (k) exists and is chosen, on
the basis of element spread or sensitivity requirements; a good average
value is k = 2. The design is then very simple for any given transfer
function. If the poles are at a greater distance than the zeros, then
the network shownin Figure 17 is used; in this case, only three capac-
itors are required. Amplifier gains between 2 and 3 are usually
sufficient.

DESIGNEXAMPLEUSINGA CONTROLLEDSOURCE

The pole-zero positions of an elliptic function filter are shown
in Figure 18. This filter has an 0.18 dB pass-band ripple and a 39.3 dB
stop-band ripple, and is of the sixth order. Since four zeros are
required on the j_ axis, two of the 2-pole, 2-zero networks are needed,
and in addition a 2-pole only network is required to complete the 6-pole
function. Figure 19 showsthe resulting filter after scaling to a max-
imumresistance of i00 K_ and to a cutoff frequency of 3160 cps (Ref. 3)-
The transfer function of each section of the overall transfer function
is also given. Note that the highest Q required is approximately 9, and
that the greatest amplifier gain is 2.762. In this case k was chosen
as 2. The experimental performance is shownin Figure 20. A cutoff
slope of over 200 dB/octave is obtained even though only moderately high
pole Q's are required. The agreementwith the calculated performance
is excellent.
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A variety of RC active synthesis procedures was considered which,

in appropriate combinations, should be suited to nearly all applica-

tions. It is hoped that we have stimulated sufficient interest here

that you will consider the subject in more detail as given in the

references, and elsewhere. Reference 4 is recommended as an excellent

brief treatment of the subject.
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Figure i.- Pole-zero positions for +R, +C networks.
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Figure 2.- Pole-zero positions for RLC networks.
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POLES DRIVING POINT TRANSFER
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Figure 3.- Pole-zero positions for +_R, +C networks.
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Figure 4.- Pole-zero positions for +_R, +C networks.
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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AMES RESEARCH CENTER, MOFFETT FIE[O, CALIFORNIA



T
-IF

Z=I+ I =p
_1 ÷.__L.I

I
P
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I. NO DC POTENTIAL AT INPUT OR OUTPUT

2. NO CAPACITORS

3. GAIN STABILITY OF +.04PERCENT OVER 50°C

4. ZIN > 50 megohms

5. Zou T <250hms

6. LOW POWER

7. FREQUENCY RESPONSE -DC TO 5 megocycles

Figure 13.- Controlled source requirements.
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Figure 16.- Controlled source 2-pole, 2-j_ axis zero realization.
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Figure 17.- Controlled source 2-pole, 2-j_ axis zero realization.
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Figure 18.- Pole-zero positions for a sixth-order low-pass filter.
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Figure 19.- Schematic of the low-pass filter.
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Figure 20.- Measured performance of the low-pass filter.
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Figure 21
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.67 +. 34.B
INDUCTORLESS FILTERS

H. J. Orchard

Lenkurt Electric Co., Inc.

San Carlos, California 94070

Attempts to produce inductorless filters with RC-active net-

works lead to circuits which are very much more sensitive to

component tolerances than conventional LC filters. An alter-

native, and apparently optimum, solution is merely to replace

each inductor in a conventional doubly loaded LC filter by a

gyrator-capacitor combination.

Over the past 15 years there has been an intensive search for a practi-

cal method of making inductorless filters. Spurred on by the develop-

ment of the negative-impedance converter I (NIC) and a subsequent paper
2

by Linvill, a tremendous effort has been applied to the synthesis of

filterlike transfer functions using active elements together with re-
These active elements have included both NICs 3sistors and capacitors

and controlled sources "4.

Frustrating all this work has been the bugbear of ,the high sensitivity

of the resulting filter performance to tolerances on both the active

and passive components Everyone working in the field has acknowledged

this prob|em, and no paper has been complete without a sensitivity an-

alysis and an assurance that the advocated design method does, in fact,

minimize the sensitivity. An excellent summary by Blecher5 has shown

that all design methods in this category have, at best, approximately

the same order of sensitivity, and hence, from a practical point of

view, one is free to choose, without penalty, whichever is the easiest

to make. One is tempted to conclude that this high sensitivity is an

inevitable part of the price which must be paid for avoiding inductors.

As an example of the order of magnitude of the problem, one may quote
the RC-active bandpass filters described by Kinariwala6 and Sipress.7

These reproduce the performance of relatively simple multiplex-telephone

channel filters in the ranges 12-16 kHz and 16-20 kHz, respective|y.

They are excellent designs of their class, and yet they require compo-

nents stable to within about one part in 104 to achieve a passband con-

stant to within O.l dB.

This paper was first published in Electronics Letters, vo]. 2, p. 224,

June 1966, and is reprinted here by permission of the Institution of

Electrical Engineers.
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Muchof the enthusiasm for RC-active filters arises from a misunder-
standing of the order of sensitivity to component tolerances which
exists in conventional LC filters. If one designs a flat-passband
reactance ladder filter to operate from a resistive source into a
resistive load, and arranges that, at the frequencies of minimumloss
over the passband, the source delivers its maximumavailable power into
the load, one finds, to a first order of approximation, that, at every
frequency in the passband and for every component, the sensitivity of
the loss to component tolerances is zero. This is easily checked by
noting that, whenone has zero loss in a reactance network, a component
change, either up or down, can only cause the loss to increase; in the
neighborhood of the correct value, the curve relating loss to any com-
ponent value must therefore be quadratic, and, consequently, d(loss)/
d(component) must be zero.

Our ability to makehigh-quality filters meeting stringent specifica-
tions relies heavily on this desensitizing property which occurs at
zero loss in a doubly loaded reactance network. It may be noted, in
passing, that this property does not occur in either singly loaded or
predistorted dissipation-compensated filters,8 which accounts for why
such networks are not widely used.

The sensitivity of an RC-active filter increases rapidly with the de-
gree and sharpness of the filter characteristic, whereas, in an LC
filter, it gets worse only by virtue of second-order effects becoming
noticeable. In the LC equivalents to the bandpass filters described
by Kinariwala and Sipress, for example, the componenttolerances allow-
able for the samequality of passbandare about 100 times greater. For
difficult filters, this factor may easily exceed lO3. In this respect,
the LC filter possesses a most valuable property, which familiarity has
tended to obscure. In attempting to make inductorless filters it would
be wise to try, as far as possible, to retain this unique property_
fortunately it can be done very easily.

The solution is to design a conventional doubly loaded LC ladder filter
to meet the specification, and simply replace each inductor in the fil-
ter by a gyratorg, 14 terminated by a capacitor. This gyrator-capacitor
network, like the LC network, is dissipationless and passive, and has
exactly the samelow sensitivity. The only remaining problem is a
practical one of how to makea gyrator which is good enough.

The basic componentavailable for eliminating inductors is the transis-
tor, which is both an active and a nonreciprocal device. Whenused in
making an NIC, for example, the nonreciprocal property is thrown away,
and the active property is carefully retained. For a gyrator, we must
do just the reverse--throw away the active property and retain the non-
reciprocity.

Bearing in mind the need for using a common-earthedpower supply, the
most useful form in which to construct a gyrator is by direct simula-
tion of the componentsof the admittance matrix, expressed as
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II 1•[:1
The two component matrices represent voltage-controlled current sources

of opposite polarity and direction, connected in parallel. By using a
reasonable amount of negative feedbacks the mutual conductances g of the

two controlled sources can easily be made stable to within one or two

parts in 10 3 . The equivalent inductance of a capacitively terminated

gyrator is L = C/g2, and thus it is at least as stable as a "real"
inductor.

The main difficulty lies in getting the terms in the principal diagonal

close enough to zero. Assuming that both principal diagonal terms in

the admittance matrix are equal at _, and that one uses a perfect capa-

citor, the maximum Q factor obtainable from the equivalent inductance is

Qmax = g//2E.

A 0. factor of 500 thus demands g = lO00 _.

Many published gyrator circuits lO,ll'12'13 have obtained low values of

by placing negative resistances in parallel (or series) with the

ports of an imperfect gyrator, to cancel substantial amounts of residual

conductance. For the present application this is unacceptable, because

it would be equivalent to making inductors with a 0. factor of perhaps 5,

and multiplying this up to 500 by negative resistance. One would have

to maintain a critical balance to better than l_o between positive and

negative resistances, and this is just what we want to avoid. This

kind of difficulty is always likely to arise if such handy elements as

operational amplifiers are used as building blocks.

Instead, the low value of ( must be obtained by careful design of the

gyrator as a whole, using negative feedback both to stabilize g and

reduce E. Our first experiments in this direction have been very suc-

cessful, and a direct replacement of the inductors in a sharp seventh-

degree filter has verified the expected low sensitivity. Work is pro-

ceeding and further results on gyrator design will be reported shortly.
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ITERATIVE OPTIMIZATION TECHNIQUES FOR CIRCUIT DESIGN

Fq67 1
_mp. x Corporation, Redwood City, California

ABSTRACT

Iterative optimization procedures are used if no classical

synthesis technique is available for the solution of the design problem.

Such is the case if the configuration and/or some of the element values

are constrained, if unavoidable parasitics or prespecified active devices

must be incorporated in the circuit, etc. This paper gives a survey of

optimization methods which were usefully employed in such situations.

INTRODUCTION

The "insertion loss" synthesis methods developed by Darling-

ton, Cauer and Piloty, as well as other classical network design tech-

niques provide powerful tools for circuit design. However, if practical

constraints are placed on the configuration and on the element values,

or if available devices (active elements, piezoelectric resonators, etc.)

must be accommodated, the fast and direct methods of classical circuit

synthesis break down. To find out what the best circuit is, under the

given restrictions, iterative design techniques must be utilized.

The price paid for the increased generality and flexibility of

these iterative methods is heavy; on comparable problems, the iterative

technique typically requires about 10 times the computer time needed for

direct synthesis. Hence, they complement, rather than replace, the

classical methods.

A (somewhat arbitrary) classification of iterative techniques

can be made according to their function. Thus, we shall distinguish

between direct design techniques, which start out from the specified

performance and result in the final circuit; approximation techniques,

which supply the transfer function satisfying the specifications; and,

finally, realization techniques, which produce the circuit from a given

transfer function. The schematic block diagrams for the three methods

are shown in Fig. i.

Any iterative optimization methods should, ideally, satisfy

the following requirements:

1) Speed of execution
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2) Ease of programming

3) Ease of feeding in input data, configuration

4) Readily interpreted output

5) Assured convergence to global optimum

6) Flexibility in accepting a wide variety of circuits and

con straints

7) Accuracy of output

8) Insensitivity to round-off errors, ill-conditioned inputs.

These properties, unfortunately, are contradictory. A

reasonable compromise, based on the application and anticipated frequency

of use, must be found. For a program that is widely and often used, for

example, requirements 1), 3) and 4) outweigh requirement 2), and vice

versa.

DEFINITIONS AND NOTATIONS

The frequency or time response of the circuit is usually the

property that must be optimized. Accordingly, the independent variable

x used will normally represent either frequency or time. The range of

a--pproximation will be denoted by a <x <b, or, briefly, [a, b]. Let the

desired response be F(x); the actual response after the jth iteration,

Fj(x). The difference of F and Fj gives the error; using a positive weight
function w(x), the error can be weighted differently at various points of

[a, b] ; the weighted error is w(x) IF(x) - Fj(x) ].

The optimization is performed by minimizing some quantity

! related to the weighted error. The quantity ! will be called the error-

criterion. The three most frequently used choices for the error-criterion
are listed below:

a. Least pth error. The quantity to be minimized is chosen
as

b p

Frequently used is p = 2; then ( is called the mean squared error.

Alternatively, p = 1 can be selected; then c is the mean absolute error.

b. Minimax error. Here, the minimized quantity is the maxi-

mum value of the weighted error in the approximation range:

 --max{w xlIF Cxl I} c2
[a,b] J '
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The minimization of the

of (I), for p -_ co.

E of (2) is equivalent to the minimization of the

The approximation obtained by choosing the minimax error

criterion is also often called Chebyshev-approximation.

c. Maximally flat error. The error and a maximum possible

number of its derivatives vanish at some inband value of x, Xo:

F(xO) - Fj(Xo) = 0

d {F(x)-F (x)}= 0
dx j

X=X
0

(3)

d n

-_n { F(x) - Fj(x)} =0

X =X O

where

a <_ x -< b. (4)0

This approximation can be obtained from the previously discussed types

by using a--_ b--_ x o. It is used if the range [a,b ]is narrow, or if

the neighborhood of x o is predominantly important in the approximation.

The iteration proceeds by changing some parameters a. con-
tained in F.. For direct design or realization, the a. are usually½he

1element values; for approximation they can be the coefficients of the

transfer function or the critical frequencies of the circuit.

Naturally, in actual computations the calculations are carried
out only at a number of sample points, typically 10 --_100. Hence, in all
preceding (and following) equations, the integrals should be replaced
by sums and the derivatives by difference quotients, in practical appli-
cations. Note, however, that in some cases the differentiation can be
carried out analytically and yields manageable results (see, e.g., Ref.
[183 ).

OPTIMIZATION TECHNIQUES

Linear Proqramminq

In some cases, the error function _ depends linearly on the

circuit parameters a i . If there are no constraints on the a i , or if all
canstraints on these are also linear in all a. , then the methods of
linear programming -- specifically, the simplex method _ -- can be
applied to the (constrained) minimization of _ .
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Linearization c2J

The range of applicability of linear programming and other

linear methods can be extended by utilizing truncated MacLaurin

series. E.g., the relation between the (j+l)th andjth approximants

can be expressed approximately in terms of /% ai, the increments of
the circuit parameters as follows

L 5Fi(x,F (x, a i + $ Fj(x + ai) _ a..
j + i ai) -_ ' ai) cO _a I

1

(5)

(The derivatives can be evaluated numerically.) Using equations

similar to (5) , all nonlinear _ (a.) and constraint equations can be
transformed into expressions whic_ are linear in the _ a:. Then

the _ai, rather than the ai, are found, using linear me_hods.

Linearization is used in several of the optimization methods

described below. It has also been successfully utilized in other itera-
tive circuit design procedures. {_' 9, is, i_3

Steepest Descent [_' s}

This method involves changing all a. in such a direction

(in the c , a. space) that the rate of change _)f c is the fastest.

This will--bea_hieved if the change is along the n-egative gradient

vector:

-VC = -_a ' -_a .... ' " (6)
1 2

Equation (6) gives only the direction of the change in the a: space, but
not its size. Several procedures have been developed for i_inding this

so-called step size. These will be discussed below. They are equi-
valent to a one-dimensional minimization.

Step Size Determination

A very simple method for finding the step size is illustrated
in Fig. 2, for a two parameter circuit. Proceeding from an initial

approximation represented by point Po' the next point P1 is obtained
by a multidimensional N_wton-Raphson process, c_' 3J From Fig. 2,
after some calculation C,3J

(ai) 8 C
Aa.  aa.=- ] (7)

 ail

i00



6

[_.

Z

tZ I

Figure 2
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results for the change in the a.. (_. must be evaluated after each itera-
tion and if it does not decreas_ any more, the step size must be cut

(e.g., by a factor of i0).

A better way to obtain the reduced step size is to use quad-

ratic interpolation. This is done by interpolating the c (ai) surface at
three equally spaced points on the curve which is its intersection with
the ( c , v c ) plane {Figs. 2 and 3), and finding the minimum of the
resulting quadratic parabola. The resulting step size is given in Fig. 3.

An effective, but very tedious, method for finding the step

size is to approximate the (c , a.) surface by a quadratic surface and
find its minimum. The resulting _quation caJ , however, contains all

partial derivatives of the form

_c

_a, _a.
1 j

and hence its evaluation is too laborious.

Third-order polynomial interpolation has also been used (Refs.

[5], [61, [181 ) to find one-dimensional minimum.

A possible method for finding the step size is to use search
techniques, described below,

Search techniques

A conceptually simple method for minimizing __ in one
variable (step size determination) or in many variables (direct minimi-
zation) is to evaluate it for a large number of parameter and independent
variable values and compare the results. The parameter values may be
picked randomly or systematically.

For one-dimensional systematic search, the use of the

Fibonaccinumbers (1,1,2,3,5,8, ..... ' Yk' Yk+l" Yk+2 =yk +y_+l'

Yk+3 = Yk+l + Yk+2 .... ) provides a highly efficlen_ algorithm rl_-
Let

(j+l(a +8 Aa) = cj (a) . ( 8 )

Here, _j (4+1) is the error after thejth (j + lth) iteration; _ a repre-
sents the known direction of the parameter increment; finally, scalar

is the unknown optimum step size, minimizing _j+l" Now _" can be
found in the following steps:

1) Find an upper bound 8 u by evaluating cj+ 1
7

l, l+k, l+k+k 2 ..... _Zk i = OO=
U

i=o

for

(9)
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I

where i is the first number such that

k = 1 + $_',_= lim y_+_i
2

k-.o_ Yk

-_ 1.618

and where

is the limiting Fibonacci ratio. Choose

=0,

Now 8 is bracketed between 8L and 8u.

Next these bounds are moved closer, using a subdivision

of the range [8L, 8u] :

2) Calculate

and

8a = 8 L + (2-k) (8 -8 L)U

8b = 8L + (k-i) ({9-SL)
U

¢ = ((a+8 Ca)
a a

(b = _(a + 8b Ca)

Compare Ea and _b :

_. If ca _< eo, then (fora convex _(a) function)

{) _ _- 8. . Hence, replace @ by 8b 8b
bLy8 < u '• CDalculate a new

a

8 a 8L + (2-k) (85-8L).

Now the process can be repeated.

[_. If _ > ¢. , then 8 < 8 <-8 Hence, by
cho_singp a u "

L a

!

8 b = 8b

and

8'b = 8a + (k-l) (8u-ca ) '

_;he process can be repeated•

%'. If c =c, , replace (8u, 8L) by (8a, @b ) and
return toP2.

(i0)

(11)

(12)

(13)

(14)

(15)

(16)
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4) If (Su-8L) became less than a specified tolerance, choose

O +O
u L

0-
2

Alternative (but less efficienO one-dimensional search algorithms

are described in Refs. [73, [16land [18].

A multivariable search technique is given by Murat_ 42 . The

method uses a sequence of linear searches, optimizing each parameter

individually, then starting again with the first parameter. The linear search

described is again less effective than the Fibonacci-search.

Least Squares

Particularly simple formulae result from choosing a least squares

error criterion and using the linearization techniques described above£Z_

For a set of sample points Ix k ] , combining eqs. (1) and (5) gives, to a
first approximation

- - _a i ] .

(k) (i) 5 a.1 x =x k

(17)

This must be minimized with respect to the _a.. From
1

-0 i=l, 2 .... n
_a.

1

a system of n linear equations is obtained for the
Having found the Aa.,

1

n unknown _a..
-- 1

(18)

a. -_ a. + /_a. i = i, 2, ... n
1 1 1

(19)

and the process is repeated.

A Hybrid Method

A combination of linearization, linear programming and
linear search has been described by Ishizaki et al [7_. The method uses

the Chebyshev error-criterion of eq. (2). It proceeds in the following

steps:
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I) Using eq. (2),

[ F (xk) -Fj+l(Xk) ] l<6)a _x k (20)

Iw[F-F.
]

Also, by eqs. (5) and (20), approximately

 wZtk
_a I -<E ; a :x k

(i) _a i
1 X :X k

_b.

}lence, introducing

£a.

a,

1

A
[n+l ¢ '

i=1,2 .... n

(21)

(22)

the linear inequalities

+_w_ _% ai _i-_

(i) _a
i

+w _ F. -F ] _ 0
n+l - ]

(23)

are obtained at all sample points x k . Eq. (23) can be supplemented
by the linearized forms of any constraint equations. E.g., positive

a values can be maintained throughout the iteration by specifying
1

-_i _:i . (24)

2) Equation (23) and the constraints are now linear in the _ i;

hence, [ _ ( can be minimized subject to these inequalities,
n,l ,

using the simplex method t_.

3) Let the solution vector obtained from step 2) be [,

Then, due to the first-order approximation used throughout, only the

direction, but not the magnitude, of [ is acceptable. Hence, a step
size determination must be performed, using linear search. This yields

the necessary changes in the parameter-values.

4) The process is repeated until the decrease in

than a predetermined value.

c is less
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5) In order to save time in the calculation of the partial
difference-quotients, a linear transformation of the unknowns can be
usec_7]. This makes it possible to use the results of previous linear
searches in finding the approximate values of the partial derivatives.

Generalized Remez-Method

Minimax error can also be achieved using a generalized

Remez_technique£8, 9] This method is based on the fact that (under

nondegenerate conditions) __as given by eq. (2) is minimized if

w IF -F. ] has n+ 1 extrema, with alternating signs but equal magni-

tudes, {n [a, b] . Hence, by (5), to a first-order approximation,

w(x k) [ F(x k) - Fj(xk) - Aa i ] = (-l)kE

k=0, i.... n (25)

Xk([a,b 3.

The iteration proceeds in the following steps:

1) An initial approximation F is found. This must have
o

the property that w IF -F ] has n+ 1 alternating (but in general unequal)

extrema. Such F may b ° found, e.g., by matching it to F(x) at n

internal points of°(a, b).

2) The n+ 1 largest alternating extrema of w IF -F ] are

located, using, e.g., linear search techniques. Let these be [°XkO] Q

3) Equations (25) are used, with j=o and x = x o , to
find the t _ a. and E . This involves solving a system ofkn+ iksimul -

1

taneous line_ar equations for the n unknown _ a and for E .

4) F] is found by changing all a to a + Da i . Then,
steps 2), 3) and 21) are repeated, until the _Aia. and_or the change in E_

1
are less than their prespecified tolerances.

A variation of this procedure uses a prescribed error-ripple

E_E_• This decreases the number of unknowns by one and thus simplifies

somewhat the calculations. The price paid is a larger error-amplitude.
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The generalized Remez-method has been used successfully
in both time-domain ¢I_] and frequency-domair{ a] circuit design.

Zero-Shiftinq Techniques

Chebyshev-approximatlon can also be achieved by the zero-
1o3

shifting technique S . This involves the following steps:

i)
points of (a,b).

2)

be [x k ].

F is again found by matching it to F(x) at n internal

9_et these zeros of F-F be [ z ]0

The n+ 1 extrema of w[ F -F ] are located. Let these
0

3) Approximately

n

(Xk) -_G(Xk)-[-]-(x k - z2; k = 0, I, ...n (26)
_=i

and hence, if the zeros are shifted by [,% z k ] , the approximate relation

n bz_

(IogelE(x k) I) =_---j_=l_'_Xk-Z_; k = 0, I, ..., n (27)

is valid.

Therefore, in order to change IE Iat all [ Xk_

I ((x k) l) =l°g E

equal magnitude E

logel _ (xk) I+ _(log e

or

,%z

log elc(x k) l- _= 1 x-_z_ = log E

values to a new

(2 8)

k = 0, l, 2, .... n. (29)

Eqs. (29) give n+ 1 simultaneous linear equations for [ L% z t] and log E .

F to F
O

A more heuristic version of this technique merely matches

at n_ points z k , finds the error-extrema and evaluates their
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average value. Next, any two adjacent z_ are moved slightly closer to
(farther from) each other if the absolute va'Iue of the extremum between

them is larger (smaller) than the average. This adjustment process is

continued until all error-extrema are of the same size.

Coefficient Matchinq

All previously discussed methods are equally useful in

direct design or in approximation. The technique described belov_ D iJ

is usable only for realization. Hence, it can only be used if an explicit

algebraic expression is known for the desired transfer function.

The method involves matching the coefficients c i of the

desired rational transfer function F to the coefficients of Fj obtained

from the actual network after the j_th iteration. Let these "actual"

coefficients be c i . The error in the i._th coefficient is defined by

¢ =K c -c. (30)
1 1 1

Here, K is an arbitrary constant, independent of _i . Now if the variable

admittancesin the circuit are y,_(k=l, 2, _.., n-l), then using a linear-

ization technique, similar to tl_at applied in eq. (5), the change in (.

can be expressed in terms of the corrections in the Yk and in K: 1
n-1

k_l _c'

1

_(i = - = _-YYk _Yk + ci _ K . (31)

For the first-order correction of all remaining coefficient errors,

/_ = - (. i = i, 2, . n. (32)1 1 • ,s

Equations (31) -(32) give _n simultaneous linear equations in the required

modifications of the admittances ( _yk ) and in b K. Note that the par-
tial derivatives in (31) can be found using simple topological methods _'n].

Nonlinear Proqramminq Methods

More sophisticated methods of nonlinear programming _
6]

utilize not only the current but also the previous value of the gradient

vector. These methods require less iteration cycles for convergence

than either the steepest descent or the linearized least squares method.

However, the computing time for each cycle is greater and so is the

necessary programming effort.
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These techniques have been used successfully in circuit
design [Iv' 18]Theyare described in detail elsewhere (by Dr. Huber) in
these Proceedings.

Constraint Types

Constraints can be placed on the configuration of the network,

as well as some (or all) of its element values. If the element values is

exactly prespecified, it cannot be used as a variable parameter in the

optimization. Frequently, however, only bounds are given on the varia-

tions of some element values a . These are normally in the form
1

£ <- a, _ u. (33)
i 1 1

(where usually 2 i O) or equivalently,

(a,1 -_'1 ) (ui -ai ) _ 0 • (34)

Sometimes bounds are also placed on the ratios of element values (due, e.g.,

to practical limitations on resonator Q's or capacitance-ratios). These

are usually of the form

a,

< _ _ u,, , (35)
ij a. I]

]

or, for positive a., a. :
1 ]

(ai-_ij aj) (uij a-a,)_ O. (36)j 1

More complicated (e.g., frequency or time dependent) constraints

are also possible, but seldom used.

Incorporation of Constraints in the Optimization

If the constraints are linear, or have been linearized using

truncated MacLaurin series, they can be incorporated into linear program-

ming procedure_ I| without difficulty. Another straightforward method for

handling constraints is to use them only as a check in the course of the

iteration, on the successive designs. If a parameter is found to violate

a bound in any iteration cycle, it is made equal to the extreme value per-

mitted by that bound. This parameter will not thereafter be changed in the

subsequent iteration. Afte._____rthe iteration has converged, a one-dimensional

optimization can be performed in the range of this parameter, to improve the

final des ign.
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The Carroll-Fiacco-McCormick Technique

A useful technique [ls- le]for handling constraints is to

incorporate them directly into the error-function.Considering, e.g.,

the constraints given in eq. (33), an additional term of the form

= rk u.-a, a. - _.

(i) i i i i
(37)

is added to the error-function. If an initial approximation satisfying all

conditions is chosen and r k assigned an arbitrary value, the presence

of d k will prevent the optimization process from violating the boundary.

Having found this initial optimum, rkis decreased (e.g., by a factor

of 10)and the optimization repeated. As r k-_ 0, the sequence of approxi-
mants converge to the constrained optimum. Combination of this method

with the Fletcher-Powell optimization technique tSJ has been used success

fully in circuit design, using either the least square_ _J or the minimax _8]

error criterion.

CONVERGENCE CONSIDERATIONS

All optimization procedures described in this paper place

certain conditions on the ((a.) function. Even the most powerful methods
z

require ((a.) to be at least convex in the approximation range, to assure
1

that the iteration does not end up in a local minimum.

Unfortunately, the functions commonly encountered in circuit

optimization do not satisfy even this modest requiremem[ ls3 . E.g., one

classic problem in this field is the iterative design of lossy filters, using

the lossless design as an initial approximation. One specific circuit has

been used as an example by two authors for illustration purposes in articles

describing novel optimizing methods. They ended up with two different

circuits, neither of which represented the true optimum, illustrating that

the error surface had at least three minima in the parameter-space.

For this reason, the choice of proper initial approximation is

of considerable importance. Since some methods (zero-shifting, least

squares) are less sensitive to the closeness of the initial approximation

than others (e.g., the Remez-method), the formers may be used as a pre-

amble to faster but more sensitive techniques. Search may precede the

optimization, in order to find a good initial approximation; it may also

follow it, to assure that the optimum found is really the global one and

not just a local minimum.
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In practical applications, a large problem can often be

partitioned into a sequence of smaller ones, if it can be established

that some a. are substantially effective in changing the response only
1

in certain parts of the interval [ a,b ] . This circumstance can be found

out either by physical considerations or by calculating the partial deriva-

tives of the initial approximation with respect to all a. at various points

of the [ a,b ] range. Once the crucial a i and their effective subregions

have been identified, the optimization can be performed in each subregion

separately. The resulting circuit can then further be improved, by con-

ventional techniques; however, it is usually extremely close to the abso-

lute optimum.
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NETWORK DESIGN VIA NONLINEAR PROGRAMMING

E. A. HUBER

Sylvania Electronic Systems-West, Mountain View, Calif.

ABSTRACT

The network design problem is considered a minimization

problem and iterative gradient techniques are used to automatically

adjust the network element values to approximate a desired network

response with minimum error. Constraint equations are used to in-

sure physical realizability. With this formulation the design problem

becomes a nonlinear programming problem. The result is an auto-

matic procedure which uses the circuit designer's experience in set-

ting up the problem but requires no tedious labor on his part.

INTRODUCTION

Suppose we have a general computer program to analyze

linear networks. It may perform a straightforward nodal or mesh

analysis or may use more complicated topological methods. In any

event, we assume that it computes specified network responses from

a description of the structure or graph of the network. Suppose that

we also have a synthesis requirement in terms of a desired network

response. We can then consider a brute force synthesis procedure
that will force the actual response to approximate the desired response

by automatic adjustment of the element values and repeated use of the

analysis program.

Consider the network shown in Figure 1; it is desired to

make this a first-order Butterworth filter by adjusting the element C1.

2: 2_

Figure 1 First Order Butterworth Filter
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Denote C1 by the variable x and assume that the frequency function of

interest is Re {Z[n (w)__ A straightforward nodal analysis of the

network would give

^ } ,H (w ; x) = Re Z.in (w;x) = I+ t__C_ 2 = I+ w_x z (1)

The desired response obtained from a first-order Butterworth filter is

H(w) = Re _Zin (w)_ = (I + w_) -I (2)

Before we may proceed we must assign some measure of error be-

tween _(w;x) produced by the network and the specified H(w). If we

choose a least squares error criterion, we can establish the error

func tion

A )2 / _4(x_- I)_
E(x) = H(w)-H(_;x) dw=

(l+0j_) z (l+wex_) _

dw . (3)

Note that even for a simple problem, this straightforward approach

has resulted in an error function which is very nonlinear in the para-

meter x. In general, there is no assurance that E(x) will be convex.

The proposed approach does not include an analytical expres-
/k

sion for H(w;x) as given in (1); instead, H(w;x) will be computed at a

number of discrete frequency points using the analysis program. Thus,

numerical integration is implied in (3), so the limits of the integration

and the frequency increments to be used are an important part of the

specification of the error criterion. Iterative gradient techniques like

those discussed by Dr. Temes will be used to minimize E(x), but there

is no assurance that these techniques will produce a solution which is

physically realizable. Thus, there is a need to constrain the region

of x over which a solution will be acceptable. It is clear, for example,

that we require x a 0. In general, nonlinear constraint inequalities
such as

cu° L! & 100
Rx

will be required to insure practical solutions. In addition, the inclusion

of constraints gives the designer additional leverage in controlling the

solutions obtained by the automated procedures.
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THE NONLINEAR PROGRAMMING PROBLEM

If we consider several adjustable parameters and denote them

by the n-component vector

X = (xl, xe , x )T
n

we can state the nonlinear programming problem as follows:

Determine a vector C which minimizes the nonlinear function

E(X) where X is an n-component vector subject to nonlinear constraint

inequalities of the form

qi (X) -> 0 i, = 1, Z, ...m. (4)

If either E(X) or any qi (X) is nonlinear, the problem can be considered
a nonlinear programming problem. For the network design problem

we assume that the structure of the network, the desired response,

the measure of error and initial estimates of the element values, _e ,

have been given•

CARROLL'S RESPONSE-SURFACE TECHNIQUES

Carroll's optimization technique as developed by Fiacco and
McCormick I' transfers the problem of minimization of a nonlinear

function with nonlinear constraints to an unconstrained minimization

problem by forming a new function

In

(5)
i=l qi (X)

where r is a real positive parameter. The first term in equation (5)

is the function to be minimized, the second term is the penality for

adding the constraints. An iterative procedure is used to minimize

equation (5) for a strictly monotonic decreasing sequence of r values,

n.l_e, tO obtain a sequence ofpoints{_ (ri,_ that respectively mini-
e{X; r.). In the limit C(r k) -_as _k -_oo .

J

Computer programs are written to calculate the sequence of

minima i _ (r.}} . An initial estimate _0 is given by the designer as

input. The in{tial perturbation parameter r0 , which depends one°

is then_calculated and iterativegradient procedures s are used to deter-

mine C (ro) by minimizing @(X;ro). The perturbation parameter is

reduced and the minimization repeated so that at the jth s£age we
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minimize cO('X;r.) using _ (r. ,) as the starting point. If E(X) and

-qi(X) are conve_, proofs 4 o_}_e convergence of E(r.) can be given.
In practice, it is doubtful that any assurance can be Jgiven concerning

the convexity of E(X) using a general analysis program of the standard

variety. Thus, some art is left in the design problem in that conver-

gence will depend on the initial estimate _o . This approach has been

used successfully for a non-trivial design problem s in which a nodal

analysis routine was used to adjust eight parameters of a two-stage

band pass amplifie r.

If one is serious about using the computer for design, per-

haps the general analysis program should be abandoned. The desira-

bility of using analysis methods which result in convex error functions

should be obvious. Also, since the bulk of the computing time is spent

in minimization using gradient techniques, analysis methods which

allow exact partial derivations as opposed to approximations by ratios

of differentials will greatly increase the efficiency of the minimization

procedure _, 6 These objectives become feasible if we restrict the

structure of the networks being designed. Lasdon and Waren 7, for

example, obtain exact partial derivatives but not convex error functions

by restricting the networks to doubly-terminated filter structures and

using ABCD parameters to compute insertion loss. They use an error

criterion which either maximizes the amount by which the insertion

loss exceeds the specifications or minimizes the amount by which the

insertion loss fails to meet the specifications. This type of error
criterion is much more desirable than that of least squares for filter

design problems.

LINEAR PROGRAMMING SEQUENCE

Another approach to the solution of the nonlinear programming

problem is to transfer it to a sequence of linear programming prob-

lems by using the linear terms of a power series.expansion about the

initialestimate _o and subsequent estimates _J of the parameters.

Watanabe s, 9 et al formulate the problem as follows.

The error criterion is chosen as a nonuniform Tchebycheff

approximation of the form:

m A

E(X) : max W(t_) IH (w;E) - H(w) I (6)

where W(_) is a positive scalar weighting function. The constant in-

equalities are of the form
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qk (_;X) <_0 k = l.... _ (7)

i -" 1,,,,m k

Consider a set of m frequency points for which equation (6) is to be

applied. The problem described by equations (6) and (7) may then be

reformulated so that we minimize {subject to constraints of the form

(_;X) { <0 i = 1, ..m
- H(wi) W(w i )

A -- { <0 i = 1, m (8)
-H(wi;X) + H(w i) W(wi ) ...

qk (wi;X) -< 0 i = 1 .... m kk=l,...,_

The problem formulated in (8) is still nonlinear because

both H(wi;X ) and qk(Wi;X) are nonlinear in the parameters X. This
problem may be reformulated into a linear problem by approximating

/% n /%

H(wi;X ) near _r by _ 8H ( wi;_x r)_" A --r
j=l 8x. hx. + anda J H(_i;X )

_r

n _ qk (wi;X)

qk(Wi;X) by F, A xj + qk (wi ;_r)" Thus for the first
j=l _ x.J

inequality in (8) we obtain,
A

n _ H (Wi _r)

j = I w'wi'_ _J

A --r

+ H(mi;X )-H(wi) _<0

i-- l_..,m

(9)

The other inequalities in (8) are expanded in like fashion. Assuming

an initial estimate T ° and an { which satisfy (8), we compute a se-

quence of points _x , _ ..... The point _r+l is determined from

X r using the first order approximation in (9) to determine h x..

Each iteration is a linear programming problem (linear in A xJ.) which

can be solved using the SIMPLEX method. 4 J
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CONCLUSIONS

Both examples of nonlinear programming techniques for

solving network design problems involve a sequence of minimizations.

If the constraint inequalities are ignored, only a single minimization

is required but the results may not be acceptable. The inclusion of

constraint inequalities, however, gives a great deal of leverage in

controlling the design and is felt to be worth the additional complexity.

In general, even the nonlinear programming techniques may require

more than one attempt for an acceptable solution. Nevertheless, a

number of designers have been successful in the design of crystal

filters, group delay equalizers and matching networks using these

techniques.
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THESENSITIVITYOFACTIVECIRCUITS

R. C. DORF
University of Santa Clara
Santa Clara, California

ABSTRACT

The sensitivity of an active circuit to parameter variations is

an important consideration in the analysis and design of modern solid-

state circuits. In this paper, several useful sensitivity indices will

be discussed and illustrated. It will be shown that the root

sensitivity which is calculated on the basis of the state vector

differential equation is particularly suitable for digital computer

calculations.

INTRODUCTION

An active circuit, whatever its nature, is subject to a changing

environment, aging, ignorance of the exact values of the circuit

parameters, and other natural factors which affect a circuit. The

variation of the parameters of a circuit will often have an important

effect on the performance of the circuit. Thus, the sensitivity of

the performance of a circuit to parameter variations is of prime

importance and is the subject of this paper.

The sensitivity of a circuit is defined as the effect of

parameter variations on the performance of the circuit. Thus, in

general, the sensitivity of a circuit is defined as

S =

Pi APi

(1)

where lj

For example, if we are concerned with the node voltage

effect of the resistance R1, we have

is the Jth performance index and Pi is the ith parameter.

eI and the

el = Ael

SRI ARI
(2)
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M

where AR I is the variation in the resistance R I . Alternatively,

one may utilize the normalized sensitivity measure which is defined

_s

Ij AI./I
S = (3)

In active circuit analysis, the performance indices of interest

are, amon_ others: node voltages, transient response, ac response,

gain, and the circuit transfer function. In order to accomplish

computer-aided circuit analysis and design, one often selects

sensitivity measures which are readily calculated using a digital

computer. As we shall find in the ensuing paragraphs, several

sensitivity indices are more readily utilizedin computer-aided analysis.

In order to illustrate the effect of parameter variations let us

consider the open-loop circuit of Fig. I and the feedback circuit of

Fig. 2. The effect of a change in the circuit A(s) + AA(s) of

Ein(S)_Eo(S)

Figure i.

Ein(S)+ c-----_ Eo(S )

m

Figure 2.

the open-loop circuit results in the output

or

Eo(S) + AEo(S) = (A(s) + AA(s))Ein(S)

AEo(S) = AA(s)Ein(S) (4)

Thus, the change in the circuit results in a proportional variation

in the output. For the closed-loop feedback system of Fig. 2, we have
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A(s) +,_(s)E (s) ÷ AEo(S) = , Ein(S) (5)o 1 + (A(s) AA(s))H(s)

Then, the change in the output is approximately

m(s)
AEo(S) = 1 + AH'('s)' Ein(S) (6)

Comparing equations (_) and (6) we note that the change in the output

has been reduced by the factor (1 + AH(s)) which is usually much

greater than one over the range of frequencies of interest. Thus, we

find that the sensitivity of an active circuit can be reduced by the

introduction of feedback.

BODE SENSITIVITY

The definition of sensitivity attributed to Bode is stated in

terms of the transfer function of a circuit, T_s) = Eo(S)/Ein(S),
1

as

T AT(sl/T(s ) (7)S = AA(s /A(s)'
AA

In the limit, for small incremental parameter changes, we obtain

sT = dT/T(s) (8)
dA(s)/A(s)

dA

Thus, we may show using Eqn. (8), that the sensitivity of the open-

loop circuit of Fig. 1 is equal to one. The sensitivity of the

feedback circuit of Fig. 2 is

sT = 1 (9)
1 +AH(s)

dA

Similarly, the sensitivity of the transfer function to the feedback

network is

T(s) -AH(s)

_(s) 1 _(s)
(i0)
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T
Therefore, we may reduce the sensitivity of an active circuit SA by

T
establishin_ AH(s) >> 1 . However, the sensitivity SH of the

circuit to the feedback network then becomes approximately 1 .

Thus, the feedback circuit must be constructed of reliable components

which will not vary with environmental changes.

In order to illustrate the effectiveness of feedback in reducing

the sensitivity of an electronic circuit let us consider the simple

circuit shown in Fig. 3. The signal flow _raph of the amplifier is

shown in Fig. 4.

Vin 
E
CC

R L

,i I
>

o

Figure 3.

Error

Input 1 e r +R. . Output

VinO _- _!L O Vo

Feedback

Figure 4.

uR L

Clearly, the gain without the feedback is A = _ .
p _

the open loop system to changes in u is equal to one.

of the closed loop circuit is

T BT/T 1

s
u

The sensitivity of

The sensitivity

(ll)

125



A
where T = I+T " For a typical value of A = 20

k = 0.5, then ST = 1/ll = 0.091 .

and if

ROOT SENSITIVITY

The sensitivity index utilized by Bode is useful for illustratin_

the concept of sensitivity and the value of the introduction of feed-

back in order to reduce the sensitivity of an electronic circuit. How-

ever, it is not a particularly usefUl index for computer analysis or

design. Another, more potentially useful index is defined in terms of

the characteristic roots of the circuits and is written as

ri ar i
(12)

In this definition, ri = the ith characteristic root, pj

parameter and the circuit transfer function is written as

= Jth

M

K n (s + zm)
T(s) -- m--0 (13)i i ,i ii i

n

n (s + ri)
i=l

r°

The sensitivity index S z is defined as the root sensitivity of a
P

circuit. The evaluation of the root sensitivity of a circuit may be

obtained utilizing root locus methods. 2 As an example, let us

consider the feedback circuit shown in Fi_. 2, where

K
A(s) = _ and H(s) = 1

The characteristic equation of this circuit is
written in root locus form we have

2
s + 8s + K = 0 or

K '8 : 0 (lh)i + s(s + )
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Considering the case where the nominal values of K = 0.5 and

8o = 1.0 the resulting characteristic roots are rI = -0.5 + J0.5

and r2 = r_ . The locus of roots for this circuit as a function

of the _ain K is shown in Fig. 5. For a + 20% change in K we

evaluate the root locations by root locus m_thods as shown in Fi_. 5.

Thus the root sensitivity for rI is

rl Arl +jo.o9 0.45 / +9o° (15)
S = _ = +0.2 =
+AK

The pole 8 also may vary as a result of environmental changes,

so that 8 = 80 + AB . Then, the effect of A8 is represented in

the characteristic equation as

2
s + s + ASs + 0.5 = 0 (16)

since the nominal value of 8 is 8 = i and the nominal value of
o

gain is K = 0.5 . Rewriting Eqn (16) in root locus form we obtain

ABs
1 + 2 = 0 (17)

s + s + 0.5

We note that the denominator is equal to the unchanged characteristic

equation when A8 = 0 . The root locus for changes in A8 is shown

in Fig. 6. We also note that for small changes in 8 one may use the

departure vector as an approximation to the locus of roots.

Evaluating the root sensitivity from the root locus, we obtain

rI 0.16 /-131.___2°
= 0.80 /-131 °

S = ....0.20
+AS

(18)

rI 0.125 _o

s = 0.20 = 0.625/39° (19)
-AS

One observes that the angle of the root sensitivity is as important a

factor as the magnitude since the direction of them_vement of the root

indicates the change in the relative stability of the circuit. Comparing

the sensitivity of the root due to K and 8 we find that the sensi-

tivity of the root due to the pole 8 is more important owing to the
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-1

r I

r 2

K"0.6

K--O. 5

K=0. h

K=0.5

+Jo.5

0

Fig. 5 - The root locus for K

Departure

Vector

qj_AB=O

AB=O. i _/l

approx •"'//k A8=+O. 2

0.7 -0.5 -0.25

Fi_. 6 - The root locus for the parameter B

+jl

J .75

J.5

J.25

0

-J .25

-J.5

-J .75
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rI

larger magnitude of S_A 8 as well as the direction of the roots

which is towards lower damping for a reduction in 8 .

SENSITIVITY IN THE TIME-DOMAIN

Several sensitivity measures may be developed which will be

useful for computer evaluation. A sensitivity measure which is

particularly useful for nonlinear circuits is defined in terms of

the sensitivity coefficients. The sensitivity coefficients (or variables)
are defined in the time-domain as

Sxi(t)
v (t) = (20)

i _p

where x.(t) = the ith state variable and p is the parameter that is

varying _ue to environmental chan_es. Therefore, for a set of n

state variables we may define the sensitivity vector as

_x
m

v(t) = B-_ (21)

where _ = (Xl, x2, , Xn )T vector. 3... = state The state variables

are commonly selected as the capacitor voltages and the inductor

currents for an active circuit. The state vector differential

equation for the circuit is written as

= f..(_, _, t) (22)

where

as

u = the vector of input signals. Equation (22) may be written

F..(_, x, u, t) = 0 (23)

and one may obtain the derivative of _ with respect to p as

_F _F dx _F dx _F

__ =__- __- + __- __ + .- ap = o (2_)
Sp BE dp B_ dp 8p dp
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Then, for example, for the linear system we obtain

_F _F 8F_ _A
--= -I, _-- = A, --- = m x = Dx_ and thus

--- _p _p -- ,
_ _x

d_ dx
m i

--- = A _p + Dxdp

_x

For the definition of the sensitivity coefficients _ = _p
equation 25 becomes

(25)

= Av + Dx(t) (26)

The solution ofhthis linear sensitivity equation may be obtained
by computer methods. The solution of equation (26) may also be

written as

v(t) = @(t) v(o) + ft $(t-_) D x (T) dT (27)
_ O

where $(t) is the transition matrix, eAt . For example, consider

the second-order system described by the linear state vector differential

equation

= A x + B u (28)

 ] Othono n . ootho
matrix D is as follows:
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and the sensitivity vector is

v(t) = #(t)v(o)+ /t [#12 (t-T)]

- - o L_'22 (t-T)] (-Xl(T))dT (30)

The typical transient response of the two sensitivity coefficients is

shown in Fig. 7.

Vl(O)

v2(o)

0

Figure 7.

In order to obtain a suitable sensitivity measure utilizing the

sensitivity coefficients, one might use

S = S" (vTu)dt__ = S" (v2(t) + v2(t))dt
0 0

(31)

Using the measure as represented by equation 31, a designer could

include the effect of sensitivity in the computer-aided design

procedure.

ROOT SENSITIVITY AND THE STATE VECTOR FORMULATION

The root sensitivity of a linear system represented by the

time-domain vector differential equation

= Ax + Bu (32)
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maybe determined by a digital computer program.5 The change
in any root r. for a chan_e in the parameters of A is

i

dr. = R(s) " dA
i tr R(s)

s=r i

(33)

where R(s) is the adJoint matrix and dA is the differential change

in A . The asterick indicates the inner product of two matrices,

that is

A * B = alb I + a2b 2 + ... (34)

where ai = ith row of A and hi = ith column of B . The symbol

tr denotes the trace of a matrix. Equation (33) is obtained by usin_

an algorithm for the characteristic roots and the characteristic matrix

which is particularly applicable to digital computer calculation. 6

Then, we have

R(s) = Is n-I + RI sn-2 + R2 sn-3 +

The algorithm for generating Rk(S) is

(35)

Rk = ARk_ I - _I

i -- I .
where dk = _ tr ARk_ I , and R°

As an example of this method let us reconsider the feedback

circuit of Fig. 2 with a transfer function (see Eqn. (14)

(36)

T(s) = 2 (BT)
s + 8s +0.5

and the nominal value of 8 is 1.0 . The resulting characteristic

root of interest is rI = -0.5 + J0.5 and we wish to determine the

root sensitivity of rI due to a small chan_e in 8 • The circuit

with the transfer function of eqn. (37) may be represented by the

state vector equation
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Therefore,

= x +
0.5 -

= Ax + Bu

[_ =I,
dA = dB , R o

fillR 1 = Ar o - dlI = 0-0.5

e.

in

dI = tr A = -B = -i

(38)

(39)

Thus, equation (36) becomes

[(s+l) 1 1H(s) = Is + R 1 =
-0.5 s

(_o)

Using equation (53) to evaluate the root change we obtain

Since

drl = tr'R s

s=r I

. dB

t-o.5 sI i i . i w i

(2s + l)

r I

-r I dB

= (2rl+l )

= -0.5 + jO.5, we have a root sensitivity

rI dr I

S+B = _ =
0.5 /-135_

s=r I

(41)

133



This root sensitivity calculation maybe comparedwith that
obtained in Eqn. (18) for incremental changes in the parameter 8 .
This method of calculating the root sensitivity of an active circuit
which is based on the time-domain equations describing the circuit

is exceedingly useful for digital computer calculation and a program

is available at present.5

CONCLUSIONS

The sensitivity of an active circuit to parameter variations is

an important consideration in the analysis and design of active

circuits. Several useful sensitivity indices have been discussed and

illustrated. The root sensitivity measure which is calculated on the

basis of the state vector differential equation is particularly useful

for digital computer calculations. Alternatively, the sensitivity

coefficients are particularly useful for indicating the sensitivity

if an analog or hybrid computer is available for computational

purposes. In any case, the usefulness of sensitivity measures to
indicate the variation of a circuit to parameter variations is of

prime importance and should be considered in the design of modern

solid-state circuits.
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ABSTRACT

Salient desirable features of computer programs for circuit analysis

are discussed. Gross characteristics of some computer programs are given.

A survey to determine the availability of computer routines for solid state

circuits discusses: scope of program extent of present use, range of

applications, availability, interchange of programs and feedback of

information. The feasibility of a pool of programs for circuit designers
is examined.

SCOPE OF CIRCUIT DESIGN PROGRAMS

Copeland (1) of Bell Telephone Laboratories recently discovered a new

oscillation mode from a computer program of a modelled Gunn effect oscillator.

This serves to illustrate that the scope of circuit analysis computer pro-

grams goes far beyond the mere corroboration of a designer's calculation.

Breadboarding and testing of electronic circuits prior to fabrication

is increasingly replaced by computer programmed analysis. According to a

recent cost analysis (2) this new method is more economical than conventional

testing of a circuit, and further allows the compilation of statistical

records for reliability and production yield, which by bench testing and

conventional calculations is uneconomical and impractical.

A detailed survey of computer programs for circuits should include

programs for production yield prediction, photomask generation and similar

steps in the manufacture of integrated circuits. Likewise computer pro-

grams on circuits are intimately tied to topics ranging from devices to

systems.

A great number of organizations have developed their own programs for

the analysis of circuits. In fact very little original work is needed if

one is satisfied to start with some matrix description of the linear net-

work, as was pointed out elsewhere in this Proceedings. Difficulties arise

when nonlinear networks are to be analyzed or when some topological description

is used to enter the network into the computer. For nonlinear networks the

existence of a solution is not always easy to assess (in essence every ele-

ment must satisfy the Lipshitz conditions (20).) For general topological

inputs an input language must be developed, as was described in Mr. Carpenter's

paper, or as is implemented in ECAP. The simplest of such "home-brewed"

programs may be a collection of subroutines to step through a set of net-

work relations which are entered as data cards. In this case the program

may be designed to automatically carry out complex number calculations

without having to be concerned with the mechanics of implementation. One

example of such a FORTRAN coded program, which produces a FORTRAN deck

from input data cards, was described in (21).
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The most complicated of the circuit analysis programs presently in wide
use are the general circuit analysis programs. There are presently well
over a dozen of these in general use and it is expected that in the near
future a veritable avalanche of these might becomeavailable. An assess-
ment of these programs for a given user will have to be made. The salient
desirable features of these programs should include (6):

1. Simple Input. A clerk with no circuit analysis background and

no knowledge of computing should be able to enter the required input data.

Input should include

a. Topology;

b. Circuit Values;

c. Excitations;

d. Output Modes.

Each of the above categories should be separate without the need of

re-inputting all data.

2. Variable Models. In active circuit analysis one of the chief

considerations is the equivalent circuit used for the active components.

There should be choice to utilize a variety of equivalent circuits as the

accuracy of the desired analysis dictates.

3. Nonlinearities. A wide range of these must be considered.

Typical ones include saturation and reverse voltage breakdown, but could

include thermal considerations also.

4. Selective Outputs. Due to the low cost of computation, it is no

trick at all to envelop the circuit designer in reams of output data.

What is required is a set of options for significant outputs - and some

automation in ignoring most numbers.

5. Automatic Parameter Modification. As pointed out in 1. changes

in parameter values should not require complete re-inputting. Such

modifications are necessary in tolerance analysis and in automated

design procedures.

6. Error Checks. The reliability and accuracy of the answers pro-

vided should be easy to assess. Generally every answer, no matter how

inaccurate, is printed with maximum precision in every program. No such

automatic error checks are presently available in circuit analysis programs.

For automated design usually these programs are combined with some

optimization procedures. Performance criteria are calculated and are

compared against the desired values. Error measures are derived and are

then used to adjust the parameters and/or the topology of the test circuit.

For such use the above criteria for analysis programs must be extended to

7. Optimization. This must be done simultaneously for the various

parameters in the network. Procedures for this task are not worked out

in general; however, much effort is currently expended in this field (22,6.)

8. Flexible Objective Description. In every design effort there is

some function, often only verbally circumscribed, which must be optimized.

Unless the objective function can be described in quantitative terms to a

computer program, no optimization can begin. Presently many objectives

("simplicity", "reliability", "ease of trouble shooting", etc.) can be

expressed only incompletely and with great difficulty in numerical form.

Further developments in this area are necessary either for writing com-

pilers which "understand" more verbal descriptions, or in educating the

designers to use I,_ qualitative descriptors.
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FEATURES OF SOME PROGRAMS

In light of the above desired properties of general network

analysis programs four programs,available to qualified users,are compared

here. This list is meant to be by no means exhaustive or even suggestive

of programs available. Very limited descriptions are given here for ECAP,

NET-I, PREDICT, and CIRCUS.

i. Electronic Circuit Analysis Program (ECAP). Probably the widest

used program, developed originally by Norden Division of United Aircraft

Corp. in cooperation with IBM. This program is a direct descendant of

Branin's Transistor Analysis Program (TAP) (24) and is freely distributed

by IBM (25). Versions exist for the IBM 1620 and the 7090/94 computers;

users have modified this program for virtually all other computers. The

program performs DC, AC, and Transient Analysis of piecewise linear net-

works. By means of program controlled switches it is possible to model

most mildly nonlinear networks. The user must provide the equivalent cir-

cuits which are to be used for the active devices; in short, the program

input is the equivalent network to be analyzed. The program performs

stepwise integration. Solution pieces are fitted together at various

boundaries defined by switch actions. The program consists of approximately

7500 FORTRAN statements and is quite easy to use. DC and AC analysis (9

separate frequencies) of the three stage amplifier given earlier in this

Proceedings (see the paper "Matrices and State Variables") took about 20

minutes on an IBM 1620-11; it took less than a minute on a CDC 3400.

The program provides for automatic parameter variations, and is

limited to 50 nodes and 200 branches in the 7094 version.

2. NET-I. Also a descendant of Branin's TAP, this program is designed

to handle nonlinear networks with minimal modeling required. The program

uses a tape of equivalent circuit parameters for given active network

types. Thus all one needs to do is call out the transistors and diodes by

type. Unfortunately the equivalent circuit used is fixed; it must accommo-

date every conceivable use of the active device. Consequently some 35

parameters are needed for the modified Ebers-Moll model. Normally this

would not be objectionable, but the use of many parameters (whether needed

or not) slows down the computations. Taking advantage of "operating range"

simplifications could speed up this program; also the limitation to Ebers-

Moll models precludes the accurate analysis of field effect transistor
circuits.

For integration the Certaine-Adams method (27), a predictor-corrector

procedure, is used. The program exists in two forms: a FAP program for

the IBM 7040 and 7090 computers and a MAP program for the IBM 7044 and

7094 computers. Adaptation of the program to other machines has met with

little success elsewhere. The program is available from Los Alamos Scientific

Laboratory.

3. PREDICT. This program was developed at IBM, Owego, N.Y. for

studies of radiation effects in circuits. The program is designed for the

IBM 7094 computer. It uses the Beaufoy-Sparks change control model for

active devices, but will handle other nonlinearities as a mathematical

subroutine. The transistor equivalent circuit must be input to the pro-

gram, thus simplified equivalent circuits may be used if their use leads

to sufficient accuracy.
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The program apparently sacrifices running time for accuracy; a
fourth order Runge-Kutta integration routine is used for integrating
the resultant nonlinear differential equations.

4. CIRCUS. This program, currently being documentedat Boeing Corp.
in Seattle, is also a radiation effect analyzer. It is, however, written
almost entirely in FORTRANIV with about 150 machine dependent instructions.
Versions of this latter portion exist for the IBM 709h, CDC6600, GE-635,
and the Univac ll08 computers. Here again the Beaufoy-Sparks model is
used with built-in device values. Integration is speededup by the use
of an "exponential integration routine". The program will be made con-
ditionally available.

It is of interest to compare someof these programs as to their execu-
tion time for a given problem. The matter of convenience of input and out-
put is rather subjective: programmers find that their particular programs
are easiest to converse with. Thus no attempt was madeto comparethem for
other than execution time. Three circuits, an inverter, a video amplifier,
and a bistable multivibrator, were used (23). Results, in arbitrary time
units, are given below.

INVERTER AMPLIFIER MULTI.

PREDICT 15.24 15.18 1.5

NET-I 5.24 h.7 0.5

CIRCUS 4.18 2.72 0.15

SURVEYS ON CIRCUIT ANALYSIS AND DESIGN PROGRAMS

Several organizations and individuals have conducted surveys on

computer programs not limited in scope to circuits, among these:

a. A Department of Defense (3) survey consists of single page

abstracts submitted by interested individuals, and includes the name of

the originator of the program.

b. The COSMIC project (4,5) administered by the Computer Center

at the University of Georgia at Athens, under a NASA grant is establish-

ing a library of verified programs. The grant is administered by NASA/

Technology Utilization, with the primary purpose of making programs

generated by NASA available to industry for a nominal fee. Input data to

COSMIC are at present primarily from NASA program libraries at Marshall

Space Flight Center in Huntsville, Manned Space Center at Houston and the

Electronic Research Center at Cambridge, Massachusetts.

c. The SHARE project is an information interchange restricted to

IBM equipment users. Good sources of information are IBM users who are

well aware of the scope and limitations of SHARE. Design automation work-

shops are held several times a year by SHARE participants.

d. The Journal of the Association for Computing Machinery (ACM)

maintains a periodic listing of new programs.

Several surveys are directed specifically towards circuits; among these:
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a. A survey by Kuo (6), assessing the scope of major network
programs, such as ECAP,NET-I and TAP. A critical evaluation of pro-
gram languages and limitation imposedby the type of computer are
examined.

b. A literature survey by Yang (7) at Villanova University with
about 200 cross-referenced papers on Computer-Aided Circuit Design.

c. The forthcoming January 1967 issue of the International
Journal of Electrical Engineering Education (8) published in Britain is
devoted entirely to programs suitable for courses in electronics.

d. Surveys by several "controlled circulation" journals usually
high-light one specific area in circuit design.

e. A survey (9) specializing in computer approaches to flowgraphs
and dichotomous techniques emphasizesteaching aspects.

In addition to these surveys irregular publications on new programs
appear in the Transactions of the IEEE.

SEMINARS AND CONFERENCES

An effective distribution of new programs occurs frequently at

specialized seminars held under the sponsorship of universities or technical

societies in a rather informal manner. The following seminars are primarily

devoted to computer-aided circuit design,and informal lecture notes have

been the source of distribution for many programs and reports, well in

advance of their regular publication. Among such seminars are:

January 17-18, 1967 University of Wisconsin

Solid-state Circuit Design

Rolf Schuenzel, Director

Engineering Extension

Jan. 19-20, 1967 University of Wisconsin at Milwaukee

Reliability Aspects of Electronics

Jan. 31 - Feb. 2, 1967 New York University - A course for experi-

enced circuit designers without prior

knowledge of computers.

Feb. 28 - March 2, 1967 MIT Kresge Auditorium

Computer Aided Circuit Design

Sponsored by NASA/ERC

April 3-7, 1967 University of California, Los Angeles

Automated Circuit Analysis

Sara Houston, Head

Engineering Extension

SEARCH AND QUALIFICATION PROCEDURES

It is conservatively estimated that at least 2000 programs are

now in use in electronics and related fields. It is therefore desirable

to establish search procedures to locate a desired program. It _ay also

be appropriate to determine standardization and qualification procedures

to assure the usefulness and reliability of a program.
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A list of subject descriptors used at NASA-ERCin searching for
routines is given in Table 1. Further refinements and additions of
descriptors are planned. Every program or subprogram is coded with
three subject identifiers, and pertinent information as to program
language and accessories required. This information is processed on
punched cards and interchanged amonginterested users. Interested
parties are encouragedto have their namesadded to the information
file.

Several hundred programs are so far coded on a provisional basis,
and a detailed report is in preparation. Specific information on individual
programs will be madeavailable through COSMIC(5). A list of representa-
tive programs is given in Table 2. Extensive work is going on at NASA-ERC

on the program "Network Analysis for System Applications" described by

Mr. Carpenter earlier. Extensions to various fields are documented by

NASA reports (lO-19).

CONCLUSION

This paper pointed out some of the problem areas in large scale

network analysis programs. The combination of these programs with optimi-

zation programs should be the next major step in automating circuit design.

Once the circuit is known, automated procedures for photomask generation

can take over. Such program systems are in experimental use at several

major installations; simplified versions should become widely available

in the next few years.

One question that naturally arises in this context is whether a

special interest group has not de-facto formed in this field. Apart

from circuit designers and not quite programmers, the engineers engaged

in extensive computer usage are developing skills and expertise in a

different field: computer using. It is therefore not too surprising

that s movement exists for the establishment of a Computer Users group,

preferrably within the professional group framework of IEEE. It is only

a matter of time, we feel, before such a group will be formed to aid and

assist its membership in this never-never-land between circuit hardware

and "circuit software". Meanwhile the most feasible route for the

exchange of automated circuit design information appears to be attendance

at conferences such as this one, and the development of personal contacts
in this field.
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Table i. Information File of Computer Pro6rams for Electronics

Subjects Identifiers

i00 System Oriented 600 Design Oriented

ii0 Model Definition 610 Methods and Techniques

120 Topology 620 Cost Diagnostics

130 Logic 630 Linear Circuits

140 Simulation 640 Digital Circuits

150 Strategy 650 Integrated Circuits

160 Information Theory 660 Instrumentation

200 Arithmetic Oriented 700 Environment Oriented

210 Matrix Techniques 710 Thermal

220 Relaxation Techniques 720 Nuclear

230 State-Space Techniques 730 Sensors

240 Non-Linear Techniques 740 Weapons

250 Numerical Procedures 750 Space

260 Mathematical Functions 760 Life

300 Real-time Oriented

310 Frequency Domain

320 Transient Domain

330 Stability Analysis

340 Sampled Data

350 Control Techniques

360 Function Synthesis

400 Statistically Oriented

hl0 Data Acquisition

420 Tests and Measurements

430 Reliability
440 Stochastic Processes

450 Data Processing

460 Monte Carlo Techniques

500 Device Oriented

510 Process Control

520 Properties of Materials

530 Fabrication Technology

540 Device Characterization

550 Component Technology

560 Information Display

800 Interface or Related Topics
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Table 2 Computer Programs for Circuit Design

Programs 0ri6inators or Users

D.C. Voltage Regulator Design

Design of Sampled Data Systems by Linear

and Quadratic Programming

Network Synthesis

Gate Assignment

Load Factor Analysis

Logic Diagram

Timing Analysis

Module Assignment

Path Routing

Steady State Analysis of Parametric Am-

plifiers

Transfer Function and Frequency Response

Inverse LaPlace Transform and Time Response

Filter Programs

Monte Carlo Analysis

Matrix Analysis of an Equivalent Circuit

Frequency Response

Worst Case Analysis of Digital Circuits

Simulation of a Tunnel-diode delay-line

Memory Cell

Tunnel Diode V-I Characteristics

Statistical Analysis of Amplifier Para-

meters

Transistor Amplifier Characteristics

from given h parameters

SLAM - Logic Simulation

NAP - AC Analysis Program

LAPL - Analysis by La Place Methods

PACER - Failure Rates from MIL-H-217

FORMAC - Non-numeric Calculations

Linear Programming - Optimization with

Linear Constraints

STRESS - Monte Carlo

POP - Non Linear Optimization

LNAR - Linear Network Analysis and
Realization

STANPAC

DEUCE '"

Worst Case Flip-Flop Design

Transistor Shunt-series Feedback Pair

Transistor RL Feedback

Transistor RC Feedback

Transistor Shunt Peaked

Vitro NAP - AC Circuit Analysis Program

Moore School

Moore School

GE - Florida

Purdue University

Bendix

Oregon State Univ.

TRW

General Dynamics

IBM- Cambridge

(Calahan)

GE - Phoenix

British Marconi

Prof. Ley - N.Y.U.

Vitro -

Silver Spring, Md.
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Table 2 Computer Prosrams for Circuit Desisn (Cont'd)

Programs Originators or Users

Transient Analyzer Generator

Design and Test of Digital Systems

A.C. and D.C. Circuit Analysis Program

CRAM Computerized Reliability Assessment
Method

Redundancy Techniques to the Reliable Design

of Digital Computers

Computer Programmed Diode Reliability

Logic Circuit Evaluation

Evaluation Criteria for Associative

Memories

Criteria for Systems Trad-Offs

Cost and Availability Program

General Purpose System Simulator

General Operating System Simulation Program

Simple Digital Device Simulator

(BLODI) Block Diagram Compiler (B and C)

(PATSI) Block Diagram Compiler

Mathematical Automated Reliability and

Safety Evaluation Program

System Reliability Prediction by Function

System Reliability Prediction by Function
Prediction of Circuit Drift Malfunctions

of Satellite Systems

Mathematical Simulation for Reliability
Prediction

General Effectiveness Methodology

TOPIC: Design of Logic Circuits using
Monte Carlo Methods

FACTOR: Finds roots of polynomials with
real coeff's

TCHDEL: finds roots of all-pole transfer

functions

RATTCH: finds zeros of chebyshev rational

functions

LAPLAC: calculates step and impulse re

sponses of a specified rational

function having simple poles

JPL

Sperry

ARINC

ARINC

ARINC

Hughes

Hollander Associates

Sylvania & ARINC

ARINC

IBM

GE - Tempo

AMF

Bell Laboratories

Lincoln Laboratories

Math emat ica

ARINC

Federal Electric

IBM

Sylvania

Computer Applications

Washington University

Univ. of Michigan

Univ. of Michigan

Univ. of Michigan

Univ. of Michigan
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APPENDIX A

LIST OF PARTICIPANTS

BAUGH, RICHARD
Hewlett Packard

Palo Alto, California

COMSTOCK, JAMES

Friden, Inc.

San Leandro, California

DAVIDSON, RAYMOND A.

Chairman, Electrical & Electronics

Engineering Department

San Fernando Valley State College

Northridge, California

DAWSON, DARROW F.

Lawrence Radiation Laboratory

Livermore, California

DEBO0, GORDON
NASA - Ames Research Center

Moffett Field, California

DECKERT, KENNETH

IBM Corporation

San Jose, California

DEROSE, CLIFFORD

Philco Corporation

Palo Alto, California

DICKIE, RONALD E.

Ryan Aeronautical Company

San Diego, California

EDENHOFER, J. R.

Autonetics

Anaheim, California

FAZARINC, ZVONKO A.
Hewlett Packard

Palo Alto, California

GRAHAM, J. F.

Collins Radio Company

Newport Beach, California

GRANT, TERRY L.
NASA - Ames Research Center

Moffett Field, California

HAINES, GEORGE W.

Sprague Electric Company

North Adams, Massachusetts

HANSEN, H. W.

Sylvania Electronic Systems

Mt. View, California

HARLEY, THEODORE P.

IBM Corporation

San Jose, California

HARRISON, DEAN
NASA - Ames Research Center

Moffett Field, California

HARTLEY, ROBERT L.

Integrated Circuit Engineerin_ Corporation

Phoenix, Arizona

HESTER, H. O.

IBM Corporation

San Jose, California

HILL, CHARLES

Hewlett Packard

Palo Alto, California

HODSON, D.

Sylvania Electronic Systems

Mt. View, California

HOWARD, BILL

University of California

Berkeley, California

HULL, R.

Sylvania Electronic Systems

Mt. View, California
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Sprague Electric Company
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IRVING, DONALDW.
FMCCorporation
Santa Clara, California

IVY, R. M.

JOHNSON,A. K.
LockheedMissiles & Space Co.
Sunnyvale, California

JOHNSON,E. T.
IBM Corporation
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JOHNSON,R. A.
Collins Radio Company
Newport Beach, California

JOHNSON,ROGERM.
Lockheed Missiles & Space Co.
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JONES,WILLIAML.
Electrical Engineerin_ Department
Utah State University
Logan, Utah

KAUFMAN,MURLAN
Tektronix
Beaverton, Oregon

KAWABATA,FRED
Tektronix
Beaverton, Oregon

LANSDON,DAN
Hewlett Packard
Palo Alto, California

LAPATRA,JACK
Electrical Engineering Department
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Davis, California

LEE, JOHN
C_neral Electric Company
San Jose, California

LEE, RICHARD
Hewlett Packard
Palo Alto, California

LEE, ROBERT
NASA- AmesResearch Center
Moffett Field, California

LINKWITZ,SIEGFRIED
Hewlett Packard
Palo Alto, California

LIU, CHUNG
IBM Corporation
San Jose, California

MAGNUSON,WALDOG.
Lawrence Radiation Laboratory
Livermore, California

MARTIN,LEROYC.
Tucson, Arizona

MCKENZIE,D. C.
Signetics Corporation
Sunnyvale, California

MILES, R. S.

Autonetics

Anaheim, California

MILLER, R. A.

Sylvania Electronic Systems

Mt. View, California

MITCHELL, DONALD

Fairchild Semiconductor

Mt. View, California

MUNOZ, ROBERT M.
NASA - Ames Research Center

Moffett Field, California

NEILSON, E. D.

Si_netics Corporation

Sunnyvale, California

O'BRIEN, TOM
Hewlett Packard

Palo Alto, California
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ONG,A. M.
U. S. Naval Electronics Laboratories
San Diego, California

STOFT,PAULE.
Hewlett Packard
Palo Alto, California

PADDOCK,JOHN
NASA- AmesResearchCenter
Moffett Field, California

SYN, WAINUN
IBM Corporation
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POTTER,R0N
Hewlett Packard
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TANIKAWA,R. K.
Autonetics
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PRUCHA,M. JOHN
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THAYER,LOUIS
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QUEEN,GREC
Fairchild Semiconductor
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REED,JOHN
Autonetics
Anaheim, California

TURNER,D. P.
IBM Corporation
San Jose, California

ROE,JOHN
Electrical En_ineerin_ Department
University of Missouri
Columbia, Missouri

ROSE,ED
AdvancedTechnolo_ Division
American Standard
Mountain View, California

ROTH,PETER
Hewlett Packard
Palo Alto, California

SHOU,SHAO-HAN
Union Carbide
Mountain View, California

SIE_ERS,WILLIAM
Fairchild Semiconductor
Mountain View, California

SLOATE,H.
General Electric Company

Syracuse, New York

STEMPIN, CARL

Lockheed Missiles & Space Co.

Sunnyvale, California

STEWART, J. A.
Lenkurt ElectricCo.

San Carlos, California

VAN SANDWYK, J.

Sylvania Electronic System

Mountain View, California

VASOUEZ, RICHARD

Hu_hes Aircraft Co.

Culver City, California

VERDUYN, FRITZ M.

IBM Corporation

San Jose, California

WEAR, LARRY L.
Hewlett Packard

Datamec Division

Mountain View, California

WESTIN, PAUL E.

Dalmo Victor Company

Belmont, California

_ILLIFORD, J. G.

Collins Radio Company

Newport Beach, California

WISEMAN, NElL

Friden, Inc.

San Leandro, California

YEN, CHU-SUN
Hewlett Packard

Palo Alto, California
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